已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint Pre-Trained Chinese Named Entity Recognition Based on Bi-Directional Language Model

计算机科学 条件随机场 命名实体识别 人工智能 特征工程 接头(建筑物) 自然语言处理 变压器 编码器 人工神经网络 特征(语言学) 对话 深度学习 语音识别 语言学 任务(项目管理) 管理 建筑工程 电压 经济 哲学 工程类 物理 操作系统 量子力学
作者
Changxia Ma,Chen Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (09): 2153003-2153003 被引量:4
标识
DOI:10.1142/s0218001421530037
摘要

The current named entity recognition (NER) is mainly based on joint convolution or recurrent neural network. In order to achieve high performance, these networks need to provide a large amount of training data in the form of feature engineering corpus and lexicons. Chinese NER is very challenging because of the high contextual relevance of Chinese characters, that is, Chinese characters and phrases may have many possible meanings in different contexts. To this end, we propose a model that leverages a pre-trained and bi-directional encoder representations-from-transformers language model and a joint bi-directional long short-term memory (Bi-LSTM) and conditional random fields (CRF) model for Chinese NER. The underlying network layer embeds Chinese characters and outputs character-level representations. The output is then fed into a bidirectional long short-term memory to capture contextual sequence information. The top layer of the proposed model is CRF, which is used to take into account the dependencies of adjacent tags and jointly decode the optimal chain of tags. A series of extensive experiments were conducted to research the useful improvements of the proposed neural network architecture on different datasets without relying heavily on handcrafted features and domain-specific knowledge. Experimental results show that the proposed model is effective, and character-level representation is of great significance for Chinese NER tasks. In addition, through this work, we have composed a new informal conversation message corpus called the autonomous bus information inquiry dataset, and compared to the advanced baseline, our method has been significantly improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
俭朴的跳跳糖完成签到 ,获得积分10
2秒前
2秒前
nn发布了新的文献求助10
2秒前
李健的小迷弟应助yuanyuan采纳,获得10
3秒前
顺利的钢笔完成签到,获得积分10
3秒前
xx发布了新的文献求助10
4秒前
4秒前
caster1发布了新的文献求助10
5秒前
huanghuang发布了新的文献求助10
6秒前
苹果果汁完成签到,获得积分10
6秒前
L1发布了新的文献求助10
6秒前
8秒前
10秒前
隐形曼青应助淡淡的鸽子采纳,获得10
10秒前
JamesPei应助自然映梦采纳,获得10
11秒前
雨城发布了新的文献求助10
12秒前
yzq完成签到 ,获得积分10
12秒前
14秒前
ant发布了新的文献求助10
16秒前
16秒前
机灵静槐发布了新的文献求助30
17秒前
17秒前
17秒前
17秒前
20秒前
一一发布了新的文献求助10
22秒前
自然映梦发布了新的文献求助10
23秒前
钱多多完成签到 ,获得积分10
26秒前
繁荣的元灵应助浮浮世世采纳,获得10
26秒前
28秒前
晚上吃什么完成签到,获得积分10
28秒前
自然映梦完成签到,获得积分10
33秒前
dkjg完成签到 ,获得积分10
34秒前
34秒前
35秒前
Lucas应助VDC采纳,获得10
37秒前
随便取发布了新的文献求助10
37秒前
月儿完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599474
求助须知:如何正确求助?哪些是违规求助? 4685116
关于积分的说明 14837894
捐赠科研通 4668470
什么是DOI,文献DOI怎么找? 2537994
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784