Joint Pre-Trained Chinese Named Entity Recognition Based on Bi-Directional Language Model

计算机科学 条件随机场 命名实体识别 人工智能 特征工程 接头(建筑物) 自然语言处理 变压器 编码器 人工神经网络 特征(语言学) 对话 深度学习 语音识别 语言学 建筑工程 哲学 物理 管理 量子力学 电压 工程类 经济 任务(项目管理) 操作系统
作者
Changxia Ma,Chen Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (09): 2153003-2153003 被引量:4
标识
DOI:10.1142/s0218001421530037
摘要

The current named entity recognition (NER) is mainly based on joint convolution or recurrent neural network. In order to achieve high performance, these networks need to provide a large amount of training data in the form of feature engineering corpus and lexicons. Chinese NER is very challenging because of the high contextual relevance of Chinese characters, that is, Chinese characters and phrases may have many possible meanings in different contexts. To this end, we propose a model that leverages a pre-trained and bi-directional encoder representations-from-transformers language model and a joint bi-directional long short-term memory (Bi-LSTM) and conditional random fields (CRF) model for Chinese NER. The underlying network layer embeds Chinese characters and outputs character-level representations. The output is then fed into a bidirectional long short-term memory to capture contextual sequence information. The top layer of the proposed model is CRF, which is used to take into account the dependencies of adjacent tags and jointly decode the optimal chain of tags. A series of extensive experiments were conducted to research the useful improvements of the proposed neural network architecture on different datasets without relying heavily on handcrafted features and domain-specific knowledge. Experimental results show that the proposed model is effective, and character-level representation is of great significance for Chinese NER tasks. In addition, through this work, we have composed a new informal conversation message corpus called the autonomous bus information inquiry dataset, and compared to the advanced baseline, our method has been significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助leanne采纳,获得10
刚刚
我是老大应助明道若昧采纳,获得10
刚刚
sssyq发布了新的文献求助10
刚刚
着急的觅海完成签到,获得积分10
刚刚
1秒前
ylky发布了新的文献求助10
6秒前
科研通AI2S应助浮浮世世采纳,获得10
6秒前
传奇3应助华中科技大学采纳,获得10
6秒前
情怀应助WN采纳,获得10
7秒前
7秒前
10秒前
朴实山兰完成签到,获得积分10
12秒前
14秒前
SciGPT应助ylky采纳,获得10
14秒前
小爪冰凉发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
JamesPei应助科研小牛采纳,获得150
16秒前
Ava应助科研小牛采纳,获得10
16秒前
16秒前
忧郁盼夏发布了新的文献求助10
19秒前
marina关注了科研通微信公众号
19秒前
沐紫心完成签到 ,获得积分10
20秒前
科研通AI5应助suger采纳,获得10
20秒前
22秒前
八九发布了新的文献求助10
22秒前
25秒前
25秒前
一个好听的名字完成签到,获得积分10
26秒前
wbh发布了新的文献求助20
26秒前
26秒前
27秒前
Eddoes完成签到,获得积分10
27秒前
WN发布了新的文献求助10
28秒前
诚心的凌旋完成签到,获得积分10
28秒前
leanne发布了新的文献求助10
30秒前
机智思真完成签到,获得积分10
30秒前
31秒前
科研小牛完成签到,获得积分10
31秒前
归尘发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173