亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Pre-Trained Chinese Named Entity Recognition Based on Bi-Directional Language Model

计算机科学 条件随机场 命名实体识别 人工智能 特征工程 接头(建筑物) 自然语言处理 变压器 编码器 人工神经网络 特征(语言学) 对话 深度学习 语音识别 语言学 任务(项目管理) 管理 建筑工程 电压 经济 哲学 工程类 物理 操作系统 量子力学
作者
Changxia Ma,Chen Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (09): 2153003-2153003 被引量:4
标识
DOI:10.1142/s0218001421530037
摘要

The current named entity recognition (NER) is mainly based on joint convolution or recurrent neural network. In order to achieve high performance, these networks need to provide a large amount of training data in the form of feature engineering corpus and lexicons. Chinese NER is very challenging because of the high contextual relevance of Chinese characters, that is, Chinese characters and phrases may have many possible meanings in different contexts. To this end, we propose a model that leverages a pre-trained and bi-directional encoder representations-from-transformers language model and a joint bi-directional long short-term memory (Bi-LSTM) and conditional random fields (CRF) model for Chinese NER. The underlying network layer embeds Chinese characters and outputs character-level representations. The output is then fed into a bidirectional long short-term memory to capture contextual sequence information. The top layer of the proposed model is CRF, which is used to take into account the dependencies of adjacent tags and jointly decode the optimal chain of tags. A series of extensive experiments were conducted to research the useful improvements of the proposed neural network architecture on different datasets without relying heavily on handcrafted features and domain-specific knowledge. Experimental results show that the proposed model is effective, and character-level representation is of great significance for Chinese NER tasks. In addition, through this work, we have composed a new informal conversation message corpus called the autonomous bus information inquiry dataset, and compared to the advanced baseline, our method has been significantly improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
jfc完成签到 ,获得积分10
14秒前
liuliu发布了新的文献求助10
14秒前
怡然自中完成签到 ,获得积分10
36秒前
延迟整流钾电流完成签到,获得积分10
44秒前
1分钟前
Hu完成签到,获得积分20
1分钟前
liuliu发布了新的文献求助10
1分钟前
lovelife完成签到,获得积分10
1分钟前
liuliu完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
fukase完成签到,获得积分10
1分钟前
renhuizhi完成签到,获得积分10
2分钟前
xxx发布了新的文献求助10
2分钟前
zpli完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小雨发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
默默善愁发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
我是老大应助默默善愁采纳,获得30
3分钟前
4分钟前
犬来八荒发布了新的文献求助10
4分钟前
4分钟前
Migue发布了新的文献求助50
4分钟前
cy完成签到 ,获得积分10
4分钟前
4分钟前
cccttt发布了新的文献求助10
4分钟前
可爱的函函应助cccttt采纳,获得10
4分钟前
5分钟前
5分钟前
笨蛋美女完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091