Joint Pre-Trained Chinese Named Entity Recognition Based on Bi-Directional Language Model

计算机科学 条件随机场 命名实体识别 人工智能 特征工程 接头(建筑物) 自然语言处理 变压器 编码器 人工神经网络 特征(语言学) 对话 深度学习 语音识别 语言学 任务(项目管理) 管理 建筑工程 电压 经济 哲学 工程类 物理 操作系统 量子力学
作者
Changxia Ma,Chen Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (09): 2153003-2153003 被引量:4
标识
DOI:10.1142/s0218001421530037
摘要

The current named entity recognition (NER) is mainly based on joint convolution or recurrent neural network. In order to achieve high performance, these networks need to provide a large amount of training data in the form of feature engineering corpus and lexicons. Chinese NER is very challenging because of the high contextual relevance of Chinese characters, that is, Chinese characters and phrases may have many possible meanings in different contexts. To this end, we propose a model that leverages a pre-trained and bi-directional encoder representations-from-transformers language model and a joint bi-directional long short-term memory (Bi-LSTM) and conditional random fields (CRF) model for Chinese NER. The underlying network layer embeds Chinese characters and outputs character-level representations. The output is then fed into a bidirectional long short-term memory to capture contextual sequence information. The top layer of the proposed model is CRF, which is used to take into account the dependencies of adjacent tags and jointly decode the optimal chain of tags. A series of extensive experiments were conducted to research the useful improvements of the proposed neural network architecture on different datasets without relying heavily on handcrafted features and domain-specific knowledge. Experimental results show that the proposed model is effective, and character-level representation is of great significance for Chinese NER tasks. In addition, through this work, we have composed a new informal conversation message corpus called the autonomous bus information inquiry dataset, and compared to the advanced baseline, our method has been significantly improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽谷槐发布了新的文献求助10
1秒前
1秒前
Dryang完成签到 ,获得积分10
1秒前
2秒前
2秒前
Magic1987发布了新的文献求助10
2秒前
充电宝应助无白开采纳,获得10
2秒前
舒心梦琪完成签到,获得积分10
3秒前
无敌猫饭发布了新的文献求助10
3秒前
哪位完成签到,获得积分10
4秒前
4秒前
zz发布了新的文献求助10
4秒前
5秒前
夏柯完成签到,获得积分10
5秒前
5秒前
XX完成签到,获得积分10
5秒前
5秒前
bkagyin应助满意语芙采纳,获得10
5秒前
黑猫乾杯应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得30
6秒前
Mic应助科研通管家采纳,获得10
6秒前
做科研的小施同学完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得30
6秒前
小巧亦竹发布了新的文献求助10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得30
6秒前
小单发布了新的文献求助50
6秒前
王丽娟应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
Jared应助科研通管家采纳,获得10
6秒前
6秒前
妩媚的海应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
smottom应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
星月应助科研通管家采纳,获得20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901