Joint Pre-Trained Chinese Named Entity Recognition Based on Bi-Directional Language Model

计算机科学 条件随机场 命名实体识别 人工智能 特征工程 接头(建筑物) 自然语言处理 变压器 编码器 人工神经网络 特征(语言学) 对话 深度学习 语音识别 语言学 建筑工程 哲学 物理 管理 量子力学 电压 工程类 经济 任务(项目管理) 操作系统
作者
Changxia Ma,Chen Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (09): 2153003-2153003 被引量:4
标识
DOI:10.1142/s0218001421530037
摘要

The current named entity recognition (NER) is mainly based on joint convolution or recurrent neural network. In order to achieve high performance, these networks need to provide a large amount of training data in the form of feature engineering corpus and lexicons. Chinese NER is very challenging because of the high contextual relevance of Chinese characters, that is, Chinese characters and phrases may have many possible meanings in different contexts. To this end, we propose a model that leverages a pre-trained and bi-directional encoder representations-from-transformers language model and a joint bi-directional long short-term memory (Bi-LSTM) and conditional random fields (CRF) model for Chinese NER. The underlying network layer embeds Chinese characters and outputs character-level representations. The output is then fed into a bidirectional long short-term memory to capture contextual sequence information. The top layer of the proposed model is CRF, which is used to take into account the dependencies of adjacent tags and jointly decode the optimal chain of tags. A series of extensive experiments were conducted to research the useful improvements of the proposed neural network architecture on different datasets without relying heavily on handcrafted features and domain-specific knowledge. Experimental results show that the proposed model is effective, and character-level representation is of great significance for Chinese NER tasks. In addition, through this work, we have composed a new informal conversation message corpus called the autonomous bus information inquiry dataset, and compared to the advanced baseline, our method has been significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毓雅完成签到,获得积分10
刚刚
Orange应助你快睡吧采纳,获得10
刚刚
3秒前
4秒前
ZZZ关闭了ZZZ文献求助
4秒前
小小酥被卷了完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
东木应助yf采纳,获得100
9秒前
冷艳的道天完成签到 ,获得积分10
11秒前
追晚风的人完成签到 ,获得积分10
12秒前
12秒前
暖暖圆圆完成签到 ,获得积分10
12秒前
12秒前
花花发布了新的文献求助10
13秒前
13秒前
gar发布了新的文献求助10
13秒前
无限的山水完成签到 ,获得积分10
14秒前
炎炎夏无声完成签到 ,获得积分10
15秒前
CHSLN完成签到 ,获得积分10
16秒前
liu发布了新的文献求助10
17秒前
18秒前
18秒前
小穆完成签到,获得积分10
19秒前
ratziel发布了新的文献求助10
19秒前
vin应助rita_sun1969采纳,获得40
19秒前
坚定的慕卉完成签到,获得积分10
19秒前
Lucas应助眼睛大尔白采纳,获得10
19秒前
cdercder发布了新的文献求助10
22秒前
持满发布了新的文献求助10
22秒前
科研通AI5应助没有昵称采纳,获得10
23秒前
怡然的乘风完成签到 ,获得积分10
23秒前
CV16完成签到,获得积分10
25秒前
Ren应助宋晓静采纳,获得10
26秒前
浮浮沉沉发布了新的文献求助10
26秒前
28秒前
fei完成签到,获得积分10
28秒前
Toong完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021