双功能
电催化剂
杂原子
双金属
析氧
纳米片
碳纤维
材料科学
石墨烯
金属
催化作用
化学工程
氧化剂
电池(电)
化学
无机化学
纳米技术
电化学
电极
复合数
有机化学
冶金
物理化学
戒指(化学)
复合材料
工程类
功率(物理)
物理
量子力学
作者
Dawei Chen,Wei Cao,Jing Liu,Jie Wang,Xiaoke Li,Luhua Jiang
标识
DOI:10.1016/j.jechem.2020.11.009
摘要
Nitrogen-doped carbon materials with vacancies/defects have been developed as highly efficient ORR electrocatalysts but with poor activity for OER, which limits their application in rechargeable metal-air batteries. Filling the vacancies/defects with heteroatoms is expected to be an effective strategy to obtain surprising catalytic activities and improve their stability especially under the strongly oxidizing conditions during the OER process. Herein, we successfully transformed the defect-rich 3D carbon nanosheets (DCN) into a bifunctional ORR/OER electrocatalyst (DCN-M) by utilizing the in-situ generated vacancies to capture metal cations via a modified salt-sealed strategy. By varying the metal (Fe, Ni) content, the captured metal cations in DCN-M existed in different chemical states, i.e., metal atoms were stabilized by C−N bonds at low metal contents, while at high metal contents, bimetal particles were covered by graphene layers, taking responsibility for catalyzing the ORR and OER, respectively. In addition, the in-situ formed graphene layers with an interconnected structure facilitate the electron transport during the reactions. The Janus-feature of DCN-M in structures ensures superior bifunctional activity and good stability towards ORR/OER for the rechargeable Zn-air battery. This work provides an effective strategy to design multifunctional electrocatalysts by heteroatom filling into vacancies of carbon materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI