Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis

诊断试验中的似然比 医学 荟萃分析 胃肠病学 接收机工作特性 诊断优势比 巴雷特食管 食管 内科学 曲线下面积 曲线下面积 腺癌 置信区间 癌症 药代动力学
作者
Julia Arribas,Giulio Antonelli,Leonardo Frazzoni,Lorenzo Fuccio,Alanna Ebigbo,Fons van der Sommen,Noha Ghatwary,Christoph Palm,Miguel Coimbra,Francesco Renna,Jacques Bergman,Prateek Sharma,Helmut Messmann,Cesare Hassan,Mário Dinis‐Ribeiro
出处
期刊:Gut [BMJ]
卷期号:70 (8): 1458-1468 被引量:72
标识
DOI:10.1136/gutjnl-2020-321922
摘要

Objective Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助x111采纳,获得10
1秒前
1秒前
2秒前
CaliU完成签到,获得积分10
2秒前
鲨鱼辣椒吼吼哈完成签到,获得积分10
3秒前
zzzyt发布了新的文献求助200
3秒前
芜湖起飞完成签到 ,获得积分10
4秒前
yu完成签到,获得积分20
5秒前
犹豫友桃完成签到,获得积分10
5秒前
抹茶夏天完成签到,获得积分10
6秒前
斯文败类应助tscclm采纳,获得10
6秒前
emmmmmq发布了新的文献求助10
7秒前
搜集达人应助ak24765采纳,获得10
7秒前
LA排骨完成签到 ,获得积分10
7秒前
天韶发布了新的文献求助30
8秒前
忧虑的向日葵完成签到,获得积分10
9秒前
9秒前
木心长完成签到,获得积分10
10秒前
小蘑菇应助dy采纳,获得10
10秒前
10秒前
10秒前
研友_VZG7GZ应助Aurora采纳,获得10
10秒前
华仔应助emmmmmq采纳,获得10
11秒前
11秒前
12秒前
yongziwu完成签到,获得积分10
13秒前
13秒前
yy完成签到,获得积分10
13秒前
Dy1an发布了新的文献求助10
13秒前
13秒前
直率的不惜完成签到,获得积分10
14秒前
14秒前
吉吉国王发布了新的文献求助10
14秒前
14秒前
15秒前
刘雄丽完成签到 ,获得积分10
15秒前
15秒前
RDF完成签到,获得积分10
15秒前
Wjh123456完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206