Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis

诊断试验中的似然比 医学 荟萃分析 胃肠病学 接收机工作特性 诊断优势比 巴雷特食管 食管 内科学 曲线下面积 曲线下面积 腺癌 置信区间 癌症 药代动力学
作者
Julia Arribas,Giulio Antonelli,Leonardo Frazzoni,Lorenzo Fuccio,Alanna Ebigbo,Fons van der Sommen,Noha Ghatwary,Christoph Palm,Miguel Coimbra,Francesco Renna,Jacques Bergman,Prateek Sharma,Helmut Messmann,Cesare Hassan,Mário Dinis‐Ribeiro
出处
期刊:Gut [BMJ]
卷期号:70 (8): 1458-1468 被引量:72
标识
DOI:10.1136/gutjnl-2020-321922
摘要

Objective Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆滑的铁勺完成签到,获得积分10
刚刚
青岚完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
学术天后完成签到,获得积分10
1秒前
BJYX发布了新的文献求助10
1秒前
菜鸡完成签到,获得积分10
2秒前
黄科研完成签到,获得积分10
2秒前
summer完成签到,获得积分0
2秒前
万能图书馆应助yuehui采纳,获得10
3秒前
3秒前
小圆发布了新的文献求助10
3秒前
4秒前
happily遇发布了新的文献求助10
4秒前
5秒前
一只小鲨鱼完成签到,获得积分10
5秒前
5秒前
5秒前
hulahula完成签到 ,获得积分10
6秒前
shelemi发布了新的文献求助10
6秒前
子凡完成签到 ,获得积分10
6秒前
孔刚完成签到,获得积分10
7秒前
fighting完成签到,获得积分10
7秒前
你们才来完成签到,获得积分10
7秒前
Islandkwaii完成签到 ,获得积分10
7秒前
pupucici关注了科研通微信公众号
7秒前
xiuxiuxiu发布了新的文献求助10
8秒前
8秒前
subohr完成签到,获得积分10
8秒前
mxm完成签到,获得积分10
8秒前
桐桐应助机智平松采纳,获得10
8秒前
我是老大应助王嘎嘎采纳,获得10
9秒前
气泡发布了新的文献求助10
9秒前
个性松思发布了新的文献求助10
10秒前
浮游应助雨停了采纳,获得10
10秒前
Jimmybythebay完成签到,获得积分10
10秒前
xldongcn完成签到,获得积分10
11秒前
111发布了新的文献求助20
11秒前
拓跋慕灵发布了新的文献求助10
11秒前
小林子完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427385
求助须知:如何正确求助?哪些是违规求助? 4540851
关于积分的说明 14174756
捐赠科研通 4458886
什么是DOI,文献DOI怎么找? 2445123
邀请新用户注册赠送积分活动 1436251
关于科研通互助平台的介绍 1413758