Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis

诊断试验中的似然比 医学 荟萃分析 胃肠病学 接收机工作特性 诊断优势比 巴雷特食管 食管 内科学 曲线下面积 曲线下面积 腺癌 置信区间 癌症 药代动力学
作者
Julia Arribas,Giulio Antonelli,Leonardo Frazzoni,Lorenzo Fuccio,Alanna Ebigbo,Fons van der Sommen,Noha Ghatwary,Christoph Palm,Miguel Coimbra,Francesco Renna,Jacques Bergman,Prateek Sharma,Helmut Messmann,Cesare Hassan,Mário Dinis‐Ribeiro
出处
期刊:Gut [BMJ]
卷期号:70 (8): 1458-1468 被引量:72
标识
DOI:10.1136/gutjnl-2020-321922
摘要

Objective Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GeniusC完成签到,获得积分10
刚刚
1秒前
1秒前
FashionBoy应助咖可乐采纳,获得10
2秒前
CR7应助淳于越泽采纳,获得20
2秒前
victory_liu发布了新的文献求助10
2秒前
亦清完成签到,获得积分10
2秒前
付艳完成签到,获得积分10
3秒前
梦醒完成签到,获得积分10
3秒前
NexusExplorer应助123采纳,获得10
4秒前
喜悦山柳完成签到,获得积分10
4秒前
专一的傲白完成签到 ,获得积分10
4秒前
4秒前
5秒前
咖啡味椰果完成签到 ,获得积分10
5秒前
DDDD发布了新的文献求助10
5秒前
Plucky完成签到,获得积分10
6秒前
FashionBoy应助Zzzzz采纳,获得30
6秒前
哦哟发布了新的文献求助10
7秒前
7秒前
7秒前
Spencer完成签到 ,获得积分10
8秒前
开朗的大叔完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
9秒前
mojinzhao完成签到,获得积分10
9秒前
诸葛烤鸭完成签到,获得积分10
10秒前
张岱帅z完成签到,获得积分10
10秒前
Eason完成签到,获得积分10
10秒前
10秒前
咖可乐发布了新的文献求助10
11秒前
小马甲应助幸福的乾采纳,获得10
11秒前
qiuer0011完成签到,获得积分10
12秒前
GGbond完成签到,获得积分10
12秒前
maz123456发布了新的文献求助10
12秒前
yx_cheng应助11111111111111采纳,获得20
12秒前
量子星尘发布了新的文献求助10
12秒前
大模型应助XHL采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582