Multichannel Diffusion Graph Convolutional Network for the Prediction of Endpoint Composition in the Converter Steelmaking Process

图形 炼钢 水准点(测量) 计算机科学 过程(计算) 人工智能 材料科学 理论计算机科学 冶金 大地测量学 操作系统 地理
作者
Liangjun Feng,Chunhui Zhao,Yuanlong Li,Min Zhou,Honglin Qiao,Chuan Fu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:35
标识
DOI:10.1109/tim.2020.3037953
摘要

The converter steelmaking process smelts hot metal to liquid steel and occupies an important position in industry. The composition of liquid steel at the endpoint is an essential quality index, including the concentrations of multiple elements, such as carbon, silicon, and manganese. Accurately predicting endpoint composition is the basis of production optimization. Hence, a multichannel diffusion graph convolutional network (MCDGCN) is presented in this article. Unlike conventional models, the developed MCDGCN describes the converter steelmaking process as a graph to exploit the correlations among element concentrations for an accurate endpoint composition prediction. We also develop a unique K-hop diffusion method to extract the globally consistent information over the graph for predicting each element. The proposed method addresses the composition prediction task for a realistic converter steelmaking process. To the best of our knowledge, this is the first time that up to 15 elements of liquid steel are covered and predicted to present a comprehensive process model. Compared with six benchmark models, MCDGCN presents state-of-the-art results, i.e., an average R 2 of 0.8475 and an average MAE of 0.0189, which shows that the correlation mining of graph deep learning can indeed improve the prediction performance for endpoint composition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gejun完成签到,获得积分20
刚刚
刚刚
汉关完成签到,获得积分10
刚刚
Happy422发布了新的文献求助10
1秒前
枫叶发布了新的文献求助10
1秒前
幽默的宛白完成签到,获得积分20
1秒前
gcc应助小小杜采纳,获得20
1秒前
小马甲应助黑熊安巴尼采纳,获得10
1秒前
2秒前
bkagyin应助junzilan采纳,获得10
2秒前
Young完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
daniel完成签到,获得积分10
4秒前
不爱学习的小渣渣完成签到,获得积分10
4秒前
4秒前
情怀应助欢喜的毛豆采纳,获得10
5秒前
勖勖发布了新的文献求助10
5秒前
自然的飞鸟完成签到,获得积分0
5秒前
6秒前
黑熊安巴尼完成签到,获得积分20
7秒前
9秒前
yiyiyi完成签到 ,获得积分10
10秒前
10秒前
桐桐应助尼古拉斯二狗蛋采纳,获得10
10秒前
Zezezee完成签到,获得积分10
11秒前
将离发布了新的文献求助10
11秒前
调研昵称发布了新的文献求助10
12秒前
kingmin应助yijiubingshi采纳,获得10
12秒前
12秒前
13秒前
hxn完成签到,获得积分10
13秒前
奋斗尔安完成签到,获得积分10
13秒前
沙拉发布了新的文献求助10
14秒前
hajy完成签到 ,获得积分10
14秒前
单纯寒凝发布了新的文献求助10
14秒前
14秒前
junzilan发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808