Evaluation of a Deep Learning–Derived Quantitative Retinopathy of Prematurity Severity Scale

医学 早产儿视网膜病变 阶段(地层学) 眼底(子宫) 胎龄 疾病严重程度 眼科 内科学 遗传学 生物 古生物学 怀孕
作者
J. Peter Campbell,Sang Jin Kim,James M. Brown,Susan Ostmo,R.V. Paul Chan,Jayashree Kalpathy–Cramer,Michael F. Chiang,Michael F. Chiang,Susan Ostmo,Sang Jin Kim,Kemal Sönmez,Robert L. Schelonka,J. Peter Campbell,R.V. Paul Chan,Karyn Jonas,Jason Horowitz,Osode Coki,Cheryl-Ann Eccles,Leora Sarna,Anton Orlin,Audina M. Berrocal,Catherin I. Negron,Kimberly Denser,Kristi Cumming,Tammy Osentoski,Tammy Check,Mary Zajechowski,Thomas Lee,Aaron Nagiel,Evan Kruger,Kathryn McGovern,Charles F. Simmons,Raghu Murthy,Sharon Galvis,Jerome Rotter,Ida Surakka,Xiaohui Li,Kent D. Taylor,Kaye Roll,Jayashree Kalpathy–Cramer,Deniz Erdoğmuş,Stratis Ioannidis,María Ana Martínez-Castellanos,Samantha Salinas-Longoria,Rafael Romero,Andrea Arriola,Francisco Olguin-Manríquez,Miroslava Meraz-Gutierrez,Carlos M. Dulanto-Reinoso,Cristina Montero-Mendoza
出处
期刊:Ophthalmology [Elsevier]
卷期号:128 (7): 1070-1076 被引量:49
标识
DOI:10.1016/j.ophtha.2020.10.025
摘要

Purpose To evaluate the clinical usefulness of a quantitative deep learning-derived vascular severity score for retinopathy of prematurity (ROP) by assessing its correlation with clinical ROP diagnosis and by measuring clinician agreement in applying a novel scale. Design Analysis of existing database of posterior pole fundus images and corresponding ophthalmoscopic examinations using 2 methods of assigning a quantitative scale to vascular severity. Participants Images were from clinical examinations of patients in the Imaging and Informatics in ROP Consortium. Four ophthalmologists and 1 study coordinator evaluated vascular severity on a scale from 1 to 9. Methods A quantitative vascular severity score (1–9) was applied to each image using a deep learning algorithm. A database of 499 images was developed for assessment of interobserver agreement. Main Outcome Measures Distribution of deep learning-derived vascular severity scores with the clinical assessment of zone (I, II, or III), stage (0, 1, 2, or 3), and extent (<3 clock hours, 3–6 clock hours, and >6 clock hours) of stage 3 evaluated using multivariate linear regression and weighted κ values and Pearson correlation coefficients for interobserver agreement on a 1-to-9 vascular severity scale. Results For deep learning analysis, a total of 6344 clinical examinations were analyzed. A higher deep learning-derived vascular severity score was associated with more posterior disease, higher disease stage, and higher extent of stage 3 disease (P < 0.001 for all). For a given ROP stage, the vascular severity score was higher in zone I than zones II or III (P < 0.001). Multivariate regression found zone, stage, and extent all were associated independently with the severity score (P < 0.001 for all). For interobserver agreement, the mean ± standard deviation weighted κ value was 0.67 ± 0.06, and the Pearson correlation coefficient ± standard deviation was 0.88 ± 0.04 on the use of a 1-to-9 vascular severity scale. Conclusions A vascular severity scale for ROP seems feasible for clinical adoption; corresponds with zone, stage, extent of stage 3, and plus disease; and facilitates the use of objective technology such as deep learning to improve the consistency of ROP diagnosis. To evaluate the clinical usefulness of a quantitative deep learning-derived vascular severity score for retinopathy of prematurity (ROP) by assessing its correlation with clinical ROP diagnosis and by measuring clinician agreement in applying a novel scale. Analysis of existing database of posterior pole fundus images and corresponding ophthalmoscopic examinations using 2 methods of assigning a quantitative scale to vascular severity. Images were from clinical examinations of patients in the Imaging and Informatics in ROP Consortium. Four ophthalmologists and 1 study coordinator evaluated vascular severity on a scale from 1 to 9. A quantitative vascular severity score (1–9) was applied to each image using a deep learning algorithm. A database of 499 images was developed for assessment of interobserver agreement. Distribution of deep learning-derived vascular severity scores with the clinical assessment of zone (I, II, or III), stage (0, 1, 2, or 3), and extent (<3 clock hours, 3–6 clock hours, and >6 clock hours) of stage 3 evaluated using multivariate linear regression and weighted κ values and Pearson correlation coefficients for interobserver agreement on a 1-to-9 vascular severity scale. For deep learning analysis, a total of 6344 clinical examinations were analyzed. A higher deep learning-derived vascular severity score was associated with more posterior disease, higher disease stage, and higher extent of stage 3 disease (P < 0.001 for all). For a given ROP stage, the vascular severity score was higher in zone I than zones II or III (P < 0.001). Multivariate regression found zone, stage, and extent all were associated independently with the severity score (P < 0.001 for all). For interobserver agreement, the mean ± standard deviation weighted κ value was 0.67 ± 0.06, and the Pearson correlation coefficient ± standard deviation was 0.88 ± 0.04 on the use of a 1-to-9 vascular severity scale. A vascular severity scale for ROP seems feasible for clinical adoption; corresponds with zone, stage, extent of stage 3, and plus disease; and facilitates the use of objective technology such as deep learning to improve the consistency of ROP diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的隶发布了新的文献求助10
刚刚
科目三应助Yeong采纳,获得10
刚刚
Ll发布了新的文献求助10
1秒前
1秒前
思源应助melodyezi采纳,获得10
2秒前
蓝色条纹衫完成签到 ,获得积分10
2秒前
3秒前
3秒前
kingwhitewing发布了新的文献求助10
3秒前
灵巧汉堡完成签到 ,获得积分10
4秒前
SciGPT应助幸福胡萝卜采纳,获得10
5秒前
积极晓兰完成签到,获得积分10
5秒前
5秒前
离子电池完成签到,获得积分10
5秒前
小熊饼干完成签到,获得积分10
5秒前
Ryuichi完成签到 ,获得积分10
6秒前
冷静的平安完成签到,获得积分20
6秒前
周士乐完成签到,获得积分10
6秒前
juan完成签到,获得积分10
7秒前
cheeselemon182完成签到,获得积分10
7秒前
英勇凝旋完成签到,获得积分10
8秒前
HopeStar发布了新的文献求助10
8秒前
8秒前
石幻枫完成签到 ,获得积分10
9秒前
生动盼秋发布了新的文献求助10
9秒前
韭黄发布了新的文献求助10
9秒前
Eliauk完成签到,获得积分10
10秒前
小野狼完成签到,获得积分10
10秒前
威武诺言完成签到,获得积分10
10秒前
fengye发布了新的文献求助10
10秒前
李东东完成签到 ,获得积分10
10秒前
Zn应助hulin_zjxu采纳,获得10
10秒前
海鸥海鸥发布了新的文献求助50
11秒前
小乔要努力变强完成签到,获得积分10
11秒前
YANG完成签到 ,获得积分10
11秒前
11秒前
在水一方应助马保国123采纳,获得10
11秒前
Jovid完成签到,获得积分10
12秒前
建成完成签到,获得积分10
12秒前
爆米花应助落落采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759