Evaluation of a Deep Learning–Derived Quantitative Retinopathy of Prematurity Severity Scale

医学 早产儿视网膜病变 阶段(地层学) 眼底(子宫) 胎龄 疾病严重程度 眼科 内科学 遗传学 生物 古生物学 怀孕
作者
J. Peter Campbell,Sang Jin Kim,James M. Brown,Susan Ostmo,R.V. Paul Chan,Jayashree Kalpathy–Cramer,Michael F. Chiang,Michael F. Chiang,Susan Ostmo,Sang Jin Kim,Kemal Sönmez,Robert L. Schelonka,J. Peter Campbell,R.V. Paul Chan,Karyn Jonas,Jason Horowitz,Osode Coki,Cheryl-Ann Eccles,Leora Sarna,Anton Orlin,Audina M. Berrocal,Catherin I. Negron,Kimberly Denser,Kristi Cumming,Tammy Osentoski,Tammy Check,Mary Zajechowski,Thomas Lee,Aaron Nagiel,Evan Kruger,Kathryn McGovern,Charles F. Simmons,Raghu Murthy,Sharon Galvis,Jerome Rotter,Ida Surakka,Xiaohui Li,Kent D. Taylor,Kaye Roll,Jayashree Kalpathy–Cramer,Deniz Erdoğmuş,Stratis Ioannidis,María Ana Martínez-Castellanos,Samantha Salinas-Longoria,Rafael Romero,Andrea Arriola,Francisco Olguin-Manríquez,Miroslava Meraz-Gutierrez,Carlos M. Dulanto-Reinoso,Cristina Montero-Mendoza
出处
期刊:Ophthalmology [Elsevier]
卷期号:128 (7): 1070-1076 被引量:49
标识
DOI:10.1016/j.ophtha.2020.10.025
摘要

Purpose To evaluate the clinical usefulness of a quantitative deep learning-derived vascular severity score for retinopathy of prematurity (ROP) by assessing its correlation with clinical ROP diagnosis and by measuring clinician agreement in applying a novel scale. Design Analysis of existing database of posterior pole fundus images and corresponding ophthalmoscopic examinations using 2 methods of assigning a quantitative scale to vascular severity. Participants Images were from clinical examinations of patients in the Imaging and Informatics in ROP Consortium. Four ophthalmologists and 1 study coordinator evaluated vascular severity on a scale from 1 to 9. Methods A quantitative vascular severity score (1–9) was applied to each image using a deep learning algorithm. A database of 499 images was developed for assessment of interobserver agreement. Main Outcome Measures Distribution of deep learning-derived vascular severity scores with the clinical assessment of zone (I, II, or III), stage (0, 1, 2, or 3), and extent (<3 clock hours, 3–6 clock hours, and >6 clock hours) of stage 3 evaluated using multivariate linear regression and weighted κ values and Pearson correlation coefficients for interobserver agreement on a 1-to-9 vascular severity scale. Results For deep learning analysis, a total of 6344 clinical examinations were analyzed. A higher deep learning-derived vascular severity score was associated with more posterior disease, higher disease stage, and higher extent of stage 3 disease (P < 0.001 for all). For a given ROP stage, the vascular severity score was higher in zone I than zones II or III (P < 0.001). Multivariate regression found zone, stage, and extent all were associated independently with the severity score (P < 0.001 for all). For interobserver agreement, the mean ± standard deviation weighted κ value was 0.67 ± 0.06, and the Pearson correlation coefficient ± standard deviation was 0.88 ± 0.04 on the use of a 1-to-9 vascular severity scale. Conclusions A vascular severity scale for ROP seems feasible for clinical adoption; corresponds with zone, stage, extent of stage 3, and plus disease; and facilitates the use of objective technology such as deep learning to improve the consistency of ROP diagnosis. To evaluate the clinical usefulness of a quantitative deep learning-derived vascular severity score for retinopathy of prematurity (ROP) by assessing its correlation with clinical ROP diagnosis and by measuring clinician agreement in applying a novel scale. Analysis of existing database of posterior pole fundus images and corresponding ophthalmoscopic examinations using 2 methods of assigning a quantitative scale to vascular severity. Images were from clinical examinations of patients in the Imaging and Informatics in ROP Consortium. Four ophthalmologists and 1 study coordinator evaluated vascular severity on a scale from 1 to 9. A quantitative vascular severity score (1–9) was applied to each image using a deep learning algorithm. A database of 499 images was developed for assessment of interobserver agreement. Distribution of deep learning-derived vascular severity scores with the clinical assessment of zone (I, II, or III), stage (0, 1, 2, or 3), and extent (<3 clock hours, 3–6 clock hours, and >6 clock hours) of stage 3 evaluated using multivariate linear regression and weighted κ values and Pearson correlation coefficients for interobserver agreement on a 1-to-9 vascular severity scale. For deep learning analysis, a total of 6344 clinical examinations were analyzed. A higher deep learning-derived vascular severity score was associated with more posterior disease, higher disease stage, and higher extent of stage 3 disease (P < 0.001 for all). For a given ROP stage, the vascular severity score was higher in zone I than zones II or III (P < 0.001). Multivariate regression found zone, stage, and extent all were associated independently with the severity score (P < 0.001 for all). For interobserver agreement, the mean ± standard deviation weighted κ value was 0.67 ± 0.06, and the Pearson correlation coefficient ± standard deviation was 0.88 ± 0.04 on the use of a 1-to-9 vascular severity scale. A vascular severity scale for ROP seems feasible for clinical adoption; corresponds with zone, stage, extent of stage 3, and plus disease; and facilitates the use of objective technology such as deep learning to improve the consistency of ROP diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闭关修炼学术小菜鸡关注了科研通微信公众号
1秒前
2秒前
走走走完成签到 ,获得积分20
2秒前
搜集达人应助Chen采纳,获得20
3秒前
oceanao应助菜菜采纳,获得10
11秒前
琴_Q123完成签到,获得积分10
12秒前
可爱的香菇完成签到 ,获得积分10
14秒前
深情安青应助AoAoo采纳,获得10
14秒前
ssassassassa完成签到 ,获得积分10
14秒前
傢誠发布了新的文献求助10
17秒前
义气的元柏完成签到 ,获得积分10
17秒前
18秒前
徐徐完成签到,获得积分10
18秒前
18秒前
zane完成签到 ,获得积分10
19秒前
李健应助风趣夜云采纳,获得10
20秒前
20秒前
春天在这李完成签到 ,获得积分10
21秒前
21秒前
Ava应助zj采纳,获得10
22秒前
闭关修炼学术小菜鸡完成签到,获得积分10
27秒前
万能图书馆应助墨墨采纳,获得30
28秒前
30秒前
profit完成签到,获得积分10
30秒前
帅气的马里奥完成签到 ,获得积分10
31秒前
32秒前
大山竹完成签到,获得积分20
32秒前
huangdq6发布了新的文献求助10
34秒前
34秒前
34秒前
36秒前
37秒前
RenHP完成签到,获得积分10
39秒前
初雪平寒发布了新的文献求助10
39秒前
39秒前
华仔应助大山竹采纳,获得10
40秒前
1257应助科研通管家采纳,获得10
41秒前
biye应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
不配.应助科研通管家采纳,获得10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012