Abstract 13652: An Innate YAP/TAZ Mechanosensing Deficit in Hutchinson-Gilford Progeria Syndrome

早熟 拉明 细胞生物学 医学 机械转化 生物 遗传学 核心 基因
作者
Brandon K. Walther,Anahita Mojiri,Navaneeth Krishna Rajeeva Pandian,Jacques Ohayon,Huie Wang,Jianhua Gu,Roderic I. Pettigrew,Abhishek Jain,Anthony Guiseppi‐Elie,John P. Cooke
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.13652
摘要

Hutchinson-Gilford Progeria Syndrome (HGPS) is a disease of accelerated aging causing death in the mid-teens from myocardial infarction or stroke. The disease is caused by a point mutation in the gene encoding lamin-A. The mutated scaffolding protein is aberrantly farnesylated inducing a constellation of defects included nuclear abnormalities, genomic damage, and rapid senescence. Therapy targeting the abnormal farnesylation provides a modest extension of life, thus new insights and therapeutic approaches are urgently needed for these children. Consistent with previous morphological observations and new studies implicating YAP/TAZ mechanobiology as an important mechanical pathway for endothelial cell (EC) health under shear stress, we hypothesized that HGPS ECs have an innate mechanical disturbance rendering them unable to respond to external, atheroprotective cues. We used a microfluidic vessel-on-a-chip with channel geometries and fluid flow to precisely model the hemodynamic stimuli present in vasculature as we have previously described. We cultured iPSC-derived HGPS ECs in this system to study mechanoresponse to shear stress and YAP/TAZ signaling. HGPS ECs manifest a rounded, flattened appearance characteristic of senescent ECs, are unable to align in response to flow, and have aberrant YAP/TAZ activity despite unidirectional laminar flow. To explore the physical underpinnings of such biochemical disturbances, we used atomic force microscopy (AFM) to precisely characterize the shape of individual HGPS cells, and their deformation to a controlled force applied by the AFM cantilever. Preliminary measurements confirmed that HGPS cells have a reduced profile and are compositely stiffer (nuclear modulus + cytoskeletal modulus) than cells derived from the unaffected parent of the child. These data provide evidence of altered biophysical properties of senescent cells which we term “mechanical aging,” which is associated with aberrant signaling in response to hemodynamic stimuli. Further characterization of mechanical aging may lead to new therapeutic approaches for HGPS and other age-related diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
1秒前
郑雅柔完成签到 ,获得积分10
3秒前
木之尹完成签到 ,获得积分10
4秒前
只喝白开水完成签到 ,获得积分10
6秒前
joeqin完成签到,获得积分10
9秒前
cadcae完成签到,获得积分10
11秒前
wushuimei完成签到 ,获得积分10
15秒前
ussiMi完成签到 ,获得积分10
25秒前
111完成签到 ,获得积分10
40秒前
高大的天道完成签到 ,获得积分10
45秒前
whitepiece完成签到,获得积分10
47秒前
清脆愫完成签到 ,获得积分10
47秒前
chenying完成签到 ,获得积分0
47秒前
珩溢完成签到 ,获得积分0
49秒前
生动雨真完成签到 ,获得积分10
52秒前
爱笑的眼睛完成签到,获得积分10
52秒前
xue112完成签到 ,获得积分10
53秒前
山楂发布了新的文献求助20
54秒前
追寻的冬寒完成签到 ,获得积分10
57秒前
1分钟前
爱静静应助怕黑的强炫采纳,获得10
1分钟前
benyu完成签到,获得积分10
1分钟前
1分钟前
艾米发布了新的文献求助10
1分钟前
1分钟前
1分钟前
芝芝发布了新的文献求助10
1分钟前
需要交流的铅笔完成签到 ,获得积分10
1分钟前
貔貅完成签到,获得积分10
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
dh完成签到,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助艾米采纳,获得10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
FashionBoy应助芝芝采纳,获得10
1分钟前
虚幻元风完成签到 ,获得积分10
1分钟前
安安滴滴完成签到 ,获得积分10
1分钟前
艾米完成签到,获得积分10
1分钟前
TTDY完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146856
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826733
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565