A Physiological Approach to Pharmacokinetics in Chronic Kidney Disease

药代动力学 肾功能 肾脏疾病 医学 药理学 人口 红细胞压积 临床试验 内科学 重症监护医学 泌尿科 环境卫生
作者
Paul R. V. Malik,Cindy H. T. Yeung,Shams Ismaeil,Urooj Advani,Sebastian Djie,Andrea N. Edginton
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
卷期号:60 (S1) 被引量:25
标识
DOI:10.1002/jcph.1713
摘要

The conventional approach to approximating the pharmacokinetics of drugs in patients with chronic kidney disease (CKD) only accounts for changes in the estimated glomerular filtration rate. However, CKD is a systemic and multifaceted disease that alters many body systems. Therefore, the objective of this exercise was to develop and evaluate a whole-body mechanistic approach to predicting pharmacokinetics in patients with CKD. Physiologically based pharmacokinetic models were developed in PK-Sim v8.0 (www.open-systems-pharmacology.org) to mechanistically represent the disposition of 7 compounds in healthy human adults. The 7 compounds selected were eliminated by glomerular filtration and active tubular secretion by the organic cation transport system to varying degrees. After a literature search, the healthy adult models were adapted to patients with CKD by numerically accounting for changes in glomerular filtration rate, kidney volume, renal perfusion, hematocrit, plasma protein concentrations, and gastrointestinal transit. Literature-informed interindividual variability was applied to the physiological parameters to facilitate a population approach. Model performance in CKD was evaluated against pharmacokinetic data from 8 clinical trials in the literature. Overall, integration of the CKD parameterization enabled exposure predictions that were within 1.5-fold error across all compounds and patients with varying stages of renal impairment. Notable improvement was observed over the conventional approach to scaling exposure, which failed in all but 1 scenario in patients with advanced CKD. Further research is required to qualify its use for first-in-CKD dose selection and clinical trial planning for a wider selection of renally eliminated compounds, including those subject to anion transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一完成签到,获得积分10
1秒前
1秒前
1秒前
高中生完成签到,获得积分10
2秒前
2秒前
2秒前
希望天下0贩的0应助TT采纳,获得10
3秒前
xxegt完成签到 ,获得积分10
3秒前
4秒前
爱吃泡芙发布了新的文献求助10
4秒前
susu完成签到,获得积分10
6秒前
会神发布了新的文献求助10
6秒前
KK完成签到,获得积分10
7秒前
充电宝应助justin采纳,获得10
9秒前
10秒前
Ch完成签到 ,获得积分10
11秒前
13秒前
ajun完成签到,获得积分10
13秒前
13秒前
春江完成签到,获得积分10
13秒前
13秒前
漂亮的松思完成签到,获得积分20
16秒前
16秒前
xiuwen发布了新的文献求助10
17秒前
黑衣人的秘密完成签到,获得积分10
17秒前
17秒前
mushrooms119完成签到,获得积分10
18秒前
18秒前
榨菜发布了新的文献求助10
18秒前
Cindy应助体贴的夕阳采纳,获得10
18秒前
MEME完成签到,获得积分10
19秒前
zfzf0422发布了新的文献求助10
19秒前
19秒前
健忘曼云发布了新的文献求助10
19秒前
drift完成签到,获得积分10
20秒前
20秒前
安谢完成签到,获得积分10
21秒前
852应助小张采纳,获得10
22秒前
活泼的飞双完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808