The Correlation-based Tucker Decomposition for Hyperspectral Image Compression

高光谱成像 人工智能 模式识别(心理学) 计算机科学 塔克分解 压缩传感 数学 压缩(物理) 图像(数学) 稀疏逼近 分解 矩阵分解 计算机视觉 图像压缩 数据压缩
作者
Rui Li,Zhibin Pan,Yang Wang,Ping Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:419: 357-370
标识
DOI:10.1016/j.neucom.2020.08.073
摘要

Abstract Tucker decomposition (TD) is widely used in hyperspectral image (HSI) processing. Generally, the performance of TD-based method depends on the core tensor and factor matrices, while the construction of core tensor and factor matrices is still a research topic. We give the detailed discussion about the correlation and performance of TD-based methods in this paper. Since TD is solved by singular value decomposition (SVD), the construction of core tensor and factor matrices should be determined by the distribution of singular energy of each mode-n matricization. Depending on the discussion, we propose a correlation-based Tucker decomposition (CBTD) method to construct the core tensor and factor matrices. As a general method, this proposed CBTD can be employed in any TD-based method of N th -order tensor. The analysis on real HSI data verifies our conclusion about correlation and good performance of CBTD. Besides, the proposed CBTD method has better ability to improve the performance of HSI compression than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼便当发布了新的文献求助10
1秒前
希望天下0贩的0应助KYN采纳,获得10
1秒前
4秒前
4秒前
youjiang发布了新的文献求助10
5秒前
糊涂虫发布了新的文献求助10
6秒前
wangjun完成签到,获得积分10
6秒前
SPQR完成签到,获得积分10
7秒前
哈哈完成签到,获得积分20
7秒前
流星完成签到,获得积分10
8秒前
QC完成签到 ,获得积分10
8秒前
10秒前
sad发布了新的文献求助10
11秒前
凝子老师发布了新的文献求助10
11秒前
11秒前
lucky完成签到,获得积分10
11秒前
又胖了发布了新的文献求助10
12秒前
14秒前
15秒前
16秒前
Wxxxxx完成签到 ,获得积分10
17秒前
超级小飞侠完成签到 ,获得积分10
18秒前
奋斗靖仇完成签到 ,获得积分10
19秒前
小蘑菇应助凝子老师采纳,获得10
19秒前
19秒前
田様应助sad采纳,获得10
20秒前
demotlx发布了新的文献求助10
21秒前
陈老太完成签到 ,获得积分10
21秒前
buno应助又胖了采纳,获得10
22秒前
22秒前
草莓江完成签到 ,获得积分10
27秒前
背后归尘完成签到,获得积分10
28秒前
28秒前
30秒前
30秒前
demotlx完成签到,获得积分10
30秒前
pencil123应助ybmdyr采纳,获得10
31秒前
向阳完成签到,获得积分20
31秒前
澈千子完成签到,获得积分10
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851