射弹
弹道极限
凯夫拉
弹道冲击
材料科学
复合材料
碳纳米管
锥面
环氧树脂
复合数
碳纤维
冶金
作者
Elias Randjbaran,Dayang Laila Abang Abdul Majid,Rizal Zahari,Mohamed Thariq Hameed Sultan,Norkhairunnisa Mazlan
标识
DOI:10.22190/fume200603024r
摘要
Investigations of the angled ballistic impact behavior on Carbon Kevlar® Hybrid fabrics with assorted volumes of carbon nanotubes (CNTs) into epoxy are presented. The ballistic impact behavior of the epoxy composites with/without CNTs is compared. Individual impact studies are conducted on the composite plate made-up of Carbon Kevlar Hybrid fabrics with diverse volumes of CNTs. The plate was fabricated with eight layers of equal thickness arranged in different percentages of CNTs. A conical steel projectile is considered for a high velocity impact. The projectile is placed very close to the plate, at the centre and impacted with sundry speeds. The variation of the kinetic energy, the increase in the internal energy of the laminate and the decrease in the velocity of the projectile with disparate angles are also studied. Based on the results, the percentage of CNTs for the ballistic impact of each angle is suggested. The solution is based on the target material properties at high ballistic impact resistance, the inclined impact and the CNT volumes. Using the ballistic limit velocity, contact duration at ballistic limit, surface thickness of target and the size of the damaged zone are predicted for fabric composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI