生物
酿酒酵母
转录组
酵母
计算生物学
遗传学
基因
基因表达
作者
Ergi Terzioğlu,Ceren Alkım,Mevlüt Arslan,Berrak Gülçin Balaban,Can Holyavkin,Halil İbrahim Kısakesen,Alican Topaloğlu,Ülkü Yılmaz Şahin,Sema Gündüz Işık,Süleyman Akman,Zeynep Petek Çakar
出处
期刊:Yeast
[Wiley]
日期:2020-07-21
卷期号:37 (9-10): 413-426
被引量:24
摘要
Silver is a non-essential metal used in medical applications as an antimicrobial agent, but it is also toxic for biological systems. To investigate the molecular basis of silver resistance in yeast, we employed evolutionary engineering using successive batch cultures at gradually increased silver stress levels up to 0.25-mM AgNO3 in 29 populations and obtained highly silver-resistant and genetically stable Saccharomyces cerevisiae strains. Cross-resistance analysis results indicated that the silver-resistant mutants also gained resistance against copper and oxidative stress. Growth physiological analysis results revealed that the highly silver-resistant evolved strain 2E was not significantly inhibited by silver stress, unlike the reference strain. Genomic and transcriptomic analysis results revealed that there were mutations and/or significant changes in the expression levels of the genes involved in cell wall integrity, cellular respiration, oxidative metabolism, copper homeostasis, endocytosis and vesicular transport activities. Particularly the missense mutation in the RLM1 gene encoding a transcription factor involved in the maintenance of cell wall integrity and with 707 potential gene targets might have a key role in the high silver resistance of 2E, along with its improved cell wall integrity, as confirmed by the lyticase sensitivity assay results. In conclusion, the comparative physiological, transcriptomic and genomic analysis results of the silver-resistant S. cerevisiae strain revealed potential key factors that will help understand the complex molecular mechanisms of silver resistance in yeast.
科研通智能强力驱动
Strongly Powered by AbleSci AI