亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of progression from pre‐diabetes to diabetes: Development and validation of a machine learning model

逻辑回归 机器学习 人工智能 糖尿病 医学 数据集 队列 预测建模 计算机科学 内科学 内分泌学
作者
Avivit Cahn,Avi Shoshan,Tal Sagiv,Rachel Yesharim,Ran Goshen,Varda Shalev,Itamar Raz
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:36 (2) 被引量:81
标识
DOI:10.1002/dmrr.3252
摘要

Abstract Aims Identification, a priori, of those at high risk of progression from pre‐diabetes to diabetes may enable targeted delivery of interventional programmes while avoiding the burden of prevention and treatment in those at low risk. We studied whether the use of a machine‐learning model can improve the prediction of incident diabetes utilizing patient data from electronic medical records. Methods A machine‐learning model predicting the progression from pre‐diabetes to diabetes was developed using a gradient boosted trees model. The model was trained on data from The Health Improvement Network (THIN) database cohort, internally validated on THIN data not used for training, and externally validated on the Canadian AppleTree and the Israeli Maccabi Health Services (MHS) data sets. The model's predictive ability was compared with that of a logistic‐regression model within each data set. Results A cohort of 852 454 individuals with pre‐diabetes (glucose ≥ 100 mg/dL and/or HbA1c ≥ 5.7) was used for model training including 4.9 million time points using 900 features. The full model was eventually implemented using 69 variables, generated from 11 basic signals. The machine‐learning model demonstrated superiority over the logistic‐regression model, which was maintained at all sensitivity levels – comparing AUC [95% CI] between the models; in the THIN data set (0.865 [0.860,0.869] vs 0.778 [0.773,0.784] P < .05), the AppleTree data set (0.907 [0.896, 0.919] vs 0.880 [0.867, 0.894] P < .05) and the MHS data set (0.925 [0.923, 0.927] vs 0.876 [0.872, 0.879] P < .05). Conclusions Machine‐learning models preserve their performance across populations in diabetes prediction, and can be integrated into large clinical systems, leading to judicious selection of persons for interventional programmes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
1秒前
lyp完成签到 ,获得积分10
4秒前
16秒前
axiao完成签到,获得积分10
18秒前
axiao发布了新的文献求助10
20秒前
SenA发布了新的文献求助10
29秒前
李健完成签到 ,获得积分10
34秒前
李健的小迷弟应助Mikey采纳,获得10
37秒前
猪猪hero应助Healer采纳,获得10
43秒前
45秒前
Mikey发布了新的文献求助10
49秒前
Healer完成签到,获得积分10
57秒前
58秒前
轻松元柏应助Healer采纳,获得10
1分钟前
1分钟前
1分钟前
完美冷风发布了新的文献求助10
1分钟前
科研通AI5应助ruiii采纳,获得10
1分钟前
善学以致用应助完美冷风采纳,获得10
1分钟前
1分钟前
1分钟前
ruiii发布了新的文献求助10
1分钟前
1分钟前
典雅问寒应助三井库里采纳,获得10
1分钟前
DD完成签到 ,获得积分10
1分钟前
1分钟前
史迪仔爱学习完成签到,获得积分10
1分钟前
1分钟前
ECUST完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助sonya采纳,获得10
1分钟前
NexusExplorer应助ruiii采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
Thien应助科研通管家采纳,获得10
2分钟前
2分钟前
豆壳儿完成签到 ,获得积分10
2分钟前
lalalatiancai完成签到,获得积分10
2分钟前
Lucas应助清脆雪糕采纳,获得10
2分钟前
sonya发布了新的文献求助10
2分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725296
求助须知:如何正确求助?哪些是违规求助? 3270317
关于积分的说明 9965444
捐赠科研通 2985287
什么是DOI,文献DOI怎么找? 1637875
邀请新用户注册赠送积分活动 777746
科研通“疑难数据库(出版商)”最低求助积分说明 747186