Integrated phytochemical analysis based on UHPLC-LTQ–Orbitrap and network pharmacology approaches to explore the potential mechanism of Lycium ruthenicum Murr. for ameliorating Alzheimer's disease

植物化学 枸杞 传统医学 机制(生物学) 疾病 药理学 化学 计算生物学 生物 医学 哲学 认识论 病理 替代医学
作者
Zhiqiang Luo,Guohua Yu,Xinjing Chen,Yang Liu,Yating Zhou,Guopeng Wang,Yuanyuan Shi
出处
期刊:Food & Function [The Royal Society of Chemistry]
卷期号:11 (2): 1362-1372 被引量:24
标识
DOI:10.1039/c9fo02840d
摘要

Based on compelling experimental and clinical evidence, the fruit of Lycium ruthenicum Murr. (LRM), a unique traditional Tibetan medicine, exerts beneficial effects on ameliorating learning and memory deficits of Alzheimer's disease (AD) and other neurodegenerative disorders. However, the potential active constituents and biological mechanism of LRM are still unknown. In this study, the major chemical constituents of LRM were first analyzed by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). A total of 35 constituents were confirmed or tentatively identified. Furthermore, the network-based pharmacological strategy was applied to clarify the molecular mechanism of LRM on AD based on the identified components. Totally, 143 major targets were screened and supposed to be effective players in alleviating AD. Then, the LRM chemicals-major LRM putative targets-major pathways network was constructed, implying potential biological function of LRM on AD. More importantly, 12 core genes which can be modulated by LRM were identified, and they may play a pivotal role in alleviating some major symptoms of AD. This study provided a scientific basis for further investigation and application of LRM, which demonstrated that the network pharmacology approach could be a powerful way for the mechanistic studies of folk medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲比发布了新的文献求助10
刚刚
zhihe完成签到,获得积分10
2秒前
3秒前
老白完成签到,获得积分10
3秒前
4秒前
喝酸奶不舔盖完成签到 ,获得积分10
4秒前
木雷完成签到,获得积分20
4秒前
赘婿应助ittt采纳,获得30
5秒前
6秒前
6秒前
OB发布了新的文献求助10
7秒前
迟大猫应助costline采纳,获得10
7秒前
hahaha完成签到,获得积分10
8秒前
明理宛秋完成签到 ,获得积分10
8秒前
pK发布了新的文献求助10
9秒前
9秒前
灵舒完成签到,获得积分10
10秒前
lcsolar发布了新的文献求助10
11秒前
骏辉完成签到 ,获得积分10
11秒前
韩浩应助科研通管家采纳,获得50
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
勤恳立轩应助科研通管家采纳,获得10
11秒前
个性的汲应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
Jarvis应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
勤恳立轩应助科研通管家采纳,获得10
12秒前
pcr163应助科研通管家采纳,获得100
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
12秒前
CL完成签到,获得积分10
12秒前
呆瓜发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571523
求助须知:如何正确求助?哪些是违规求助? 3142021
关于积分的说明 9445618
捐赠科研通 2843561
什么是DOI,文献DOI怎么找? 1562905
邀请新用户注册赠送积分活动 731380
科研通“疑难数据库(出版商)”最低求助积分说明 718551