Integrated phytochemical analysis based on UHPLC-LTQ–Orbitrap and network pharmacology approaches to explore the potential mechanism of Lycium ruthenicum Murr. for ameliorating Alzheimer's disease

植物化学 枸杞 传统医学 机制(生物学) 疾病 药理学 化学 计算生物学 生物 医学 哲学 认识论 病理 替代医学
作者
Zhiqiang Luo,Guohua Yu,Xinjing Chen,Yang Liu,Yating Zhou,Guopeng Wang,Yuanyuan Shi
出处
期刊:Food & Function [The Royal Society of Chemistry]
卷期号:11 (2): 1362-1372 被引量:24
标识
DOI:10.1039/c9fo02840d
摘要

Based on compelling experimental and clinical evidence, the fruit of Lycium ruthenicum Murr. (LRM), a unique traditional Tibetan medicine, exerts beneficial effects on ameliorating learning and memory deficits of Alzheimer's disease (AD) and other neurodegenerative disorders. However, the potential active constituents and biological mechanism of LRM are still unknown. In this study, the major chemical constituents of LRM were first analyzed by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). A total of 35 constituents were confirmed or tentatively identified. Furthermore, the network-based pharmacological strategy was applied to clarify the molecular mechanism of LRM on AD based on the identified components. Totally, 143 major targets were screened and supposed to be effective players in alleviating AD. Then, the LRM chemicals-major LRM putative targets-major pathways network was constructed, implying potential biological function of LRM on AD. More importantly, 12 core genes which can be modulated by LRM were identified, and they may play a pivotal role in alleviating some major symptoms of AD. This study provided a scientific basis for further investigation and application of LRM, which demonstrated that the network pharmacology approach could be a powerful way for the mechanistic studies of folk medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的如霜完成签到,获得积分20
2秒前
4秒前
skikiqi发布了新的文献求助10
4秒前
5秒前
7秒前
Hsevencc完成签到 ,获得积分10
8秒前
123完成签到,获得积分20
8秒前
江小鱼在查文献完成签到,获得积分10
8秒前
fighting完成签到 ,获得积分10
8秒前
是风动完成签到 ,获得积分10
9秒前
10秒前
SciGPT应助Qiang采纳,获得10
10秒前
10秒前
eason应助wj18637196763采纳,获得10
11秒前
英姑应助123采纳,获得20
12秒前
Neinei发布了新的文献求助10
12秒前
渴望挪例聚完成签到,获得积分10
12秒前
杳鸢应助热塑性哈士奇采纳,获得10
12秒前
12秒前
脆脆大王完成签到,获得积分10
13秒前
車侖完成签到 ,获得积分10
13秒前
qiannnn发布了新的文献求助10
14秒前
15秒前
快递乱跑完成签到 ,获得积分10
15秒前
苗小七完成签到,获得积分10
15秒前
JamesPei应助西瓜xg采纳,获得10
16秒前
冷傲半邪发布了新的文献求助10
16秒前
MateoX发布了新的文献求助10
16秒前
17秒前
张成完成签到,获得积分10
18秒前
执着应助yyp采纳,获得10
20秒前
丸子完成签到 ,获得积分10
20秒前
LJ完成签到,获得积分10
21秒前
bxg发布了新的文献求助10
21秒前
22秒前
青红造了个白完成签到,获得积分20
22秒前
Neinei完成签到,获得积分20
23秒前
Lucas应助的士速递采纳,获得10
23秒前
lin完成签到,获得积分10
25秒前
Luna完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571735
求助须知:如何正确求助?哪些是违规求助? 3142208
关于积分的说明 9446367
捐赠科研通 2843644
什么是DOI,文献DOI怎么找? 1562971
邀请新用户注册赠送积分活动 731508
科研通“疑难数据库(出版商)”最低求助积分说明 718557