Gelator Length Precisely Tunes Supramolecular Hydrogel Stiffness and Neuronal Phenotype in 3D Culture

神经突 材料科学 自愈水凝胶 再生(生物学) 纳米纤维 纳米技术 雪旺细胞 生物物理学 细胞生物学 化学 体外 生物 高分子化学 生物化学
作者
Jacqueline M. Godbe,Ronit Freeman,Lena F. Burbulla,Jacob A. Lewis,Dimitri Krainc,Samuel I. Stupp
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (2): 1196-1207 被引量:40
标识
DOI:10.1021/acsbiomaterials.9b01585
摘要

The brain is one of the softest tissues in the body with storage moduli (G′) that range from hundreds to thousands of pascals (Pa) depending on the anatomic region. Furthermore, pathological processes such as injury, aging, and disease can cause subtle changes in the mechanical properties throughout the central nervous system. However, these changes in mechanical properties lie within an extremely narrow range of moduli, and there is great interest in understanding their effect on neuron biology. We report here the design of supramolecular hydrogels based on anionic peptide amphiphile nanofibers using oligo-l-lysines of different molecular lengths to precisely tune gel stiffness over the range of interest and found that G′ increases by 10.5 Pa for each additional lysine monomer in the oligo-l-lysine chain. We found that small changes in storage modulus on the order of 70 Pa significantly affect survival, neurite growth, and tyrosine hydroxylase-positive population in dopaminergic neurons derived from induced pluripotent stem cells. The work reported here offers a strategy to tune mechanical stiffness of hydrogels for use in three-dimensional neuronal cell cultures and transplantation matrices for neural regeneration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助多多采纳,获得10
刚刚
刚刚
Lei发布了新的文献求助10
1秒前
大胆的向日葵完成签到,获得积分10
1秒前
Younes发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
碧蓝老黑完成签到,获得积分10
1秒前
炎燚发布了新的文献求助10
2秒前
2秒前
浮游应助魔音甜菜采纳,获得10
4秒前
科研通AI6应助满_1999采纳,获得10
5秒前
5秒前
7秒前
Ava应助fafafa采纳,获得10
8秒前
9秒前
科研通AI6应助alex采纳,获得10
10秒前
李健的小迷弟应助炎燚采纳,获得10
11秒前
闪闪的雨柏完成签到,获得积分10
12秒前
科研通AI6应助shengsheng采纳,获得10
13秒前
13秒前
科研通AI2S应助weixin112233采纳,获得10
13秒前
酷波er应助May采纳,获得10
13秒前
14秒前
14秒前
爱吃米线发布了新的文献求助10
14秒前
郑浩龙完成签到,获得积分10
14秒前
14秒前
Jane_Xin发布了新的文献求助10
15秒前
79完成签到,获得积分10
16秒前
ll完成签到,获得积分10
16秒前
16秒前
小卡拉米应助黎明采纳,获得10
16秒前
XiaoYuuu完成签到,获得积分10
16秒前
FashionBoy应助喂喂喂采纳,获得10
17秒前
Lei完成签到,获得积分10
17秒前
饭米粒发布了新的文献求助10
20秒前
20秒前
魔音甜菜完成签到,获得积分10
20秒前
ankang完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524