Robust Kernelized Multiview Self-Representation for Subspace Clustering

线性子空间 张量(固有定义) 聚类分析 子空间拓扑 核(代数) 代表(政治) 数学 模式识别(心理学) 人工智能 特征(语言学) 秩(图论) 计算机科学 光谱聚类 组合数学 哲学 政治 语言学 法学 纯数学 政治学 几何学
作者
Yuan Xie,Jinyan Liu,Yanyun Qu,Dacheng Tao,Wensheng Zhang,Longquan Dai,Lizhuang Ma
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 868-881 被引量:70
标识
DOI:10.1109/tnnls.2020.2979685
摘要

In this article, we propose a multiview self-representation model for nonlinear subspaces clustering. By assuming that the heterogeneous features lie within the union of multiple linear subspaces, the recent multiview subspace learning methods aim to capture the complementary and consensus from multiple views to boost the performance. However, in real-world applications, data feature usually resides in multiple nonlinear subspaces, leading to undesirable results. To this end, we propose a kernelized version of tensor-based multiview subspace clustering, which is referred to as Kt-SVD-MSC, to jointly learn self-representation coefficients in mapped high-dimensional spaces and multiple views correlation in unified tensor space. In view-specific feature space, a kernel-induced mapping is introduced for each view to ensure the separability of self-representation coefficients. In unified tensor space, a new kind of tensor low-rank regularizer is employed on the rotated self-representation coefficient tensor to preserve the global consistency across different views. We also derive an algorithm to efficiently solve the optimization problem with all the subproblems having closed-form solutions. Furthermore, by incorporating the nonnegative and sparsity constraints, the proposed method can be easily extended to a useful variant, meaning that several useful variants can be easily constructed in a similar way. Extensive experiments of the proposed method are tested on eight challenging data sets, in which a significant (even a breakthrough) advance over state-of-the-art multiview clustering is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助dhsnh采纳,获得10
刚刚
刚刚
酷炫小馒头完成签到,获得积分10
3秒前
SciGPT应助Elixir采纳,获得10
3秒前
Akim应助称心凡采纳,获得10
3秒前
3秒前
simon完成签到 ,获得积分10
4秒前
5秒前
傲娇的凡旋应助qwd采纳,获得10
6秒前
小锅发布了新的文献求助10
7秒前
赘婿应助LL采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
今日不再蛇皇应助云康肖采纳,获得20
10秒前
11秒前
凩飒应助柳叨叨采纳,获得30
11秒前
11秒前
12秒前
123关注了科研通微信公众号
13秒前
Yet.完成签到,获得积分10
13秒前
bkagyin应助zxm采纳,获得10
13秒前
Elixir发布了新的文献求助10
14秒前
笨笨西装应助怡然菲音采纳,获得10
15秒前
lfchen发布了新的文献求助10
15秒前
郭郭张张发布了新的文献求助10
15秒前
Juliet完成签到,获得积分10
15秒前
穿多点发布了新的文献求助10
16秒前
yangyangyang发布了新的文献求助30
16秒前
dhy关注了科研通微信公众号
16秒前
YAO发布了新的文献求助10
16秒前
17秒前
拉拉完成签到 ,获得积分20
17秒前
薄荷发布了新的文献求助10
17秒前
莫x莫完成签到 ,获得积分10
17秒前
松溪乾发布了新的文献求助10
18秒前
阿kkk完成签到,获得积分10
18秒前
Elixir完成签到,获得积分10
19秒前
kong心cai完成签到 ,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3587604
求助须知:如何正确求助?哪些是违规求助? 3156195
关于积分的说明 9509860
捐赠科研通 2858994
什么是DOI,文献DOI怎么找? 1571288
邀请新用户注册赠送积分活动 736829
科研通“疑难数据库(出版商)”最低求助积分说明 721959