Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film

极化 材料科学 电介质 电容器 铁电性 薄膜 偶极子 光电子学 复合材料 小型化 电压 纳米技术 电气工程 工程类 有机化学 化学
作者
Biaolin Peng,Silin Tang,Lü Li,Qi Zhang,Haitao Huang,Gang Bai,Lei Miao,Bingsuo Zou,Laijun Liu,Wenhong Sun,Zhong Lin Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:77: 105132-105132 被引量:28
标识
DOI:10.1016/j.nanoen.2020.105132
摘要

Ferroelectric thin films possessing high dielectric breakdown strength (DBS) are attractive materials employed to satisfy the requirements of miniaturization and integration of electronic components, especially for dielectric capacitors with large discharge energy density (W). In this work, it is demonstrated for the first time that high DBS in ferroelectric thin film can be awakened by a low-temperature-poling method. Mn-doped Pb0.97La0.02(Zr0.905Sn0.015Ti0.08)O3 (PLZST) relaxor thin films were prepared by using a sol-gel method, as when poled at near liquid nitrogen temperature, its DBS and W at room temperature are greatly enhanced (nearly doubled) from 1286 kV/cm to 2000 kV/cm, and from 16.6 J/cm3 to 31.2 J/cm3, respectively. The high ordering of defect dipoles during the low-temperature-poling process is responsible for the great enhancement of the awakened DBS and the outstanding improvement of the W. It concludes that the low-temperature-poling method can provide a new alternative strategy to strength the DBS and thus to improve the electrical performances of ferroelectric materials for the applications required strong electric fields in many fields, especially for dielectric energy storage, electrocaloric cooling, and energy harvesting, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
义气大象完成签到,获得积分10
1秒前
大方嵩发布了新的文献求助10
1秒前
Cacilhas完成签到 ,获得积分10
1秒前
0000发布了新的文献求助30
1秒前
豆子发布了新的文献求助10
1秒前
Jenny应助木野狐采纳,获得10
1秒前
Khr1stINK发布了新的文献求助10
2秒前
牛牛完成签到,获得积分10
3秒前
3秒前
3秒前
li完成签到,获得积分10
3秒前
无花果应助发嗲的忆寒采纳,获得30
3秒前
xiaotudou95应助excellent_shit采纳,获得10
4秒前
btcat完成签到,获得积分10
4秒前
小蘑菇应助搬砖道人采纳,获得10
5秒前
思源应助校长采纳,获得10
5秒前
鸣隐完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
8秒前
8秒前
科研通AI5应助yx采纳,获得10
8秒前
9秒前
hym完成签到,获得积分10
9秒前
马静雨关注了科研通微信公众号
9秒前
111222完成签到,获得积分20
9秒前
10秒前
10秒前
三卡车安排你完成签到,获得积分10
11秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
曾经以亦完成签到,获得积分10
13秒前
所所应助发疯的游子采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794