计算机科学
人工神经网络
蛋白质组
蛋白质组学
软件
深度学习
干扰(通信)
吞吐量
鉴定(生物学)
人工智能
软件套件
质谱法
机器学习
深层神经网络
生物信息学
化学
生物
色谱法
电信
频道(广播)
生物化学
基因
程序设计语言
无线
计算机网络
植物
作者
Vadim Demichev,Christoph B. Messner,Spyros I. Vernardis,Kathryn S. Lilley,Markus Ralser
出处
期刊:Nature Methods
[Springer Nature]
日期:2019-11-25
卷期号:17 (1): 41-44
被引量:1307
标识
DOI:10.1038/s41592-019-0638-x
摘要
We present an easy-to-use integrated software suite, DIA-NN, that exploits deep neural networks and new quantification and signal correction strategies for the processing of data-independent acquisition (DIA) proteomics experiments. DIA-NN improves the identification and quantification performance in conventional DIA proteomic applications, and is particularly beneficial for high-throughput applications, as it is fast and enables deep and confident proteome coverage when used in combination with fast chromatographic methods. A deep learning-based software tool, DIA-NN, enables deep proteome analysis from data generated using fast chromatographic approaches and data-independent acquisition mass spectrometry.
科研通智能强力驱动
Strongly Powered by AbleSci AI