Sensing Users’ Emotional Intelligence in Social Networks

情商 心理学 人际交往 感知 社交网络(社会语言学) 面(心理学) 人际关系 社会心理学 身份(音乐) 计算机科学 社会化媒体 人格 万维网 五大性格特征 物理 神经科学 声学
作者
Xiangyu Wei,Guangquan Xu,Hao Wang,Yongzhong He,Zhen Han,Wei Wang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 103-112 被引量:14
标识
DOI:10.1109/tcss.2019.2944687
摘要

Social networks have integrated into the daily lives of most people in the way of interactions and of lifestyles. The users' identity, relationships, or other characteristics can be explored from the social networking data, in order to provide personalized services to the users. In this article, we focus on predicting the user's emotional intelligence (EI) based on social networking data. As an essential facet of users' psychological characteristics, EI plays an important role on well-being, interpersonal relationships, and overall success in people's life. Perception of EI contributes to predicting one's behavior or group behavior. Most existing work on predicting people's EI is based on questionnaires that may collect dishonest answers or unconscientious responses, thus leading in potentially inaccurate prediction results. In this article, we are motivated to propose EI prediction models based on the sentiment analysis of social networking data. The models are represented by four dimensions, including self-awareness, self-regulation, self-motivation, and social relationships. The EI of a user is then measured by four numerical values or the sum of them. In the experiments, we predict the EIs of over a hundred thousand users based on one of the largest social networks of China, Weibo. The predicting results demonstrate the effectiveness of our models. The results show that the distribution of the four EI's dimensions of users is roughly normal. The results also indicate that EI scores of females are generally higher than males' EI scores. This is consistent with previous findings. In addition, the four dimensions of EI are correlated. We finally analyze the advantages and the disadvantages of our models in predicting users' EI with social networking data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gesj发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
科研通AI5应助向忆南采纳,获得10
2秒前
Xuhang_Ma发布了新的文献求助10
3秒前
完美世界应助caili采纳,获得10
3秒前
宓广缘完成签到 ,获得积分10
4秒前
wangayting发布了新的文献求助10
4秒前
4秒前
LWJ发布了新的文献求助10
4秒前
si发布了新的文献求助10
5秒前
科研通AI5应助千帆采纳,获得10
6秒前
och3完成签到,获得积分10
6秒前
9秒前
赘婿应助小叶子采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
小鱼发布了新的文献求助10
10秒前
xz1120完成签到,获得积分10
10秒前
10秒前
任性的眼睛完成签到,获得积分10
11秒前
体贴的晟睿完成签到,获得积分20
11秒前
咚咚发布了新的文献求助10
12秒前
正直的魔镜完成签到 ,获得积分10
12秒前
2333发布了新的文献求助10
13秒前
13秒前
Jane完成签到,获得积分10
14秒前
图南发布了新的文献求助30
14秒前
14秒前
15秒前
咸鱼发布了新的文献求助30
15秒前
隐形曼青应助Gesj采纳,获得10
16秒前
17秒前
17秒前
香蕉觅云应助pphu采纳,获得10
17秒前
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The sociopragmatics of emotion 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3694360
求助须知:如何正确求助?哪些是违规求助? 3245773
关于积分的说明 9848037
捐赠科研通 2957407
什么是DOI,文献DOI怎么找? 1621583
邀请新用户注册赠送积分活动 767170
科研通“疑难数据库(出版商)”最低求助积分说明 740950