SoliAudit: Smart Contract Vulnerability Assessment Based on Machine Learning and Fuzz Testing

模糊测试 智能合约 坚固性 计算机科学 计算机安全 利用 黑客 块链 脆弱性(计算) 数据库事务 机器学习 稳健性 审计 人工智能 数据库 操作系统 会计 程序设计语言 软件 业务
作者
Jianwei Liao,Tsung-Ta Tsai,Chia-Kang He,Chin‐Wei Tien
标识
DOI:10.1109/iotsms48152.2019.8939256
摘要

Blockchain has flourished in recent years. As a decentralized system architecture, smart contracts give the blockchain a user-defined logical concept. The smart contract is an executable program that can be used for automatic transactions on the Ethereum blockchain. In 2016, the DAO attack resulted in the theft of 60M USD due to unsafe smart contracts. Smart contracts are vulnerable to hacking because they are difficult to patch and there is a lack of assessment standards for ensuring their quality. Hackers can exploit the vulnerabilities in smart contracts when they have been published on Ethereum. Thus, this study presents SoliAudit (Solidity Audit), which uses machine learning and fuzz testing for smart contract vulnerability assessment. SoliAudit employs machine learning technology using Solidity machine code as learning features to verify 13 kinds of vulnerabilities, which have been listed as Top 10 threats by an open security organization. We also created a gray-box fuzz testing mechanism, which consists of a fuzzer contract and a simulated blockchain environment for on-line transaction verification. Different from previous research systems, SoliAudit can detect vulnerabilities without expert knowledge or predefined patterns. We subjected SoliAudit to real-world evaluation by using near 18k smart contracts from the Ethereum blockchain and Capture-the-Flag samples. The results show that the accuracy of SoliAudit can reach to 90% and the fuzzing can help identify potential weaknesses, including reentrancy and arithmetic overflow problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到,获得积分10
1秒前
1秒前
叶远望发布了新的文献求助10
2秒前
su发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
NexusExplorer应助高兴的彩虹采纳,获得10
6秒前
7秒前
三颗星南极三完成签到 ,获得积分10
7秒前
南方完成签到 ,获得积分10
7秒前
SciGPT应助七秒采纳,获得10
8秒前
8秒前
连鹰发布了新的文献求助10
9秒前
大力荷花发布了新的文献求助10
11秒前
袖玫瑰发布了新的文献求助10
13秒前
香蕉诗蕊举报懒羊羊求助涉嫌违规
16秒前
茗泠发布了新的文献求助10
16秒前
向往生活发布了新的文献求助10
16秒前
连鹰完成签到,获得积分10
17秒前
杰瑞发布了新的文献求助10
17秒前
笨笨人龙完成签到 ,获得积分10
17秒前
FashionBoy应助大宝君采纳,获得30
17秒前
亮亮发布了新的文献求助10
22秒前
杜本内完成签到,获得积分10
23秒前
23秒前
玄冰发布了新的文献求助20
24秒前
24秒前
阿童木完成签到,获得积分10
25秒前
江边鸟完成签到 ,获得积分10
27秒前
辛勤的博涛完成签到,获得积分10
27秒前
liu发布了新的文献求助10
28秒前
jin发布了新的文献求助10
29秒前
29秒前
顾矜应助CGN采纳,获得10
31秒前
Miku完成签到,获得积分10
31秒前
awxefc完成签到,获得积分10
32秒前
善学以致用应助笑点低靖采纳,获得10
33秒前
35秒前
pork0001完成签到,获得积分20
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528