🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你你。这个春天,让互助之光璀璨绽放!查看详情

CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer

医学 无线电技术 癌症 放射科 医学物理学 内科学
作者
Rui-Jia Sun,Mengjie Fang,Lei Tang,Xiao-Ting Li,Qiao-Yuan Lu,Di Dong,Jie Tian,Ying‐Shi Sun
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:132: 109277-109277 被引量:44
标识
DOI:10.1016/j.ejrad.2020.109277
摘要

Purpose This work aimed to develop and validate a deep learning radiomics model for evaluating serosa invasion in gastric cancer. Materials and Methods A total of 572 gastric cancer patients were included in this study. Firstly, we retrospectively enrolled 428 consecutive patients (252 in the training set and 176 in the test set I) with pathological confirmed T3 or T4a. Subsequently, 144 patients who were clinically diagnosed cT3 or cT4a were prospectively allocated to the test set II. Histological verification was based on the surgical specimens. CT findings were determined by a panel of three radiologists. Conventional hand-crafted features and deep learning features were extracted from three phases CT images and were utilized to build radiomics signatures via machine learning methods. Incorporating the radiomics signatures and CT findings, a radiomics nomogram was developed via multivariable logistic regression. Its diagnostic ability was measured using receiver operating characteristiccurve analysis. Results The radiomics signatures, built with support vector machine or artificial neural network, showed good performance for discriminating T4a in the test I and II sets with area under curves (AUCs) of 0.76−0.78 and 0.79−0.84. The nomogram had powerful diagnostic ability in all training, test I and II sets with AUCs of 0.90 (95 % CI, 0.86−0.94), 0.87 (95 % CI, 0.82−0.92) and 0.90 (95 % CI, 0.85−0.96) respectively. The net reclassification index revealed that the radiomics nomogram had significantly better performance than the clinical model (p-values < 0.05). Conclusions The deep learning radiomics model based on CT images is effective at discriminating serosa invasion in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
士萧完成签到,获得积分10
刚刚
seon完成签到,获得积分10
刚刚
fyjlfy完成签到 ,获得积分10
1秒前
下雨发布了新的文献求助10
1秒前
余志宇的爹完成签到,获得积分10
1秒前
苏木发布了新的文献求助10
2秒前
AbOO发布了新的文献求助10
2秒前
青蛙十字绣00700完成签到,获得积分10
2秒前
hh完成签到 ,获得积分10
2秒前
香蕉觅云应助南念采纳,获得10
2秒前
2秒前
酷炫果汁完成签到 ,获得积分10
2秒前
zww完成签到,获得积分20
3秒前
3秒前
英姑应助westbobo采纳,获得10
3秒前
3秒前
士萧发布了新的文献求助10
3秒前
4秒前
mczhu完成签到,获得积分10
4秒前
yzr完成签到,获得积分10
4秒前
5秒前
5秒前
爱吃小龙虾完成签到,获得积分10
5秒前
星星点灯完成签到,获得积分10
6秒前
ptalala发布了新的文献求助10
7秒前
7秒前
青青青青完成签到,获得积分10
7秒前
7秒前
lmc完成签到,获得积分10
8秒前
蜡笔小新完成签到,获得积分10
8秒前
jammszs发布了新的文献求助10
8秒前
9秒前
淡然绝山完成签到,获得积分10
9秒前
12333完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
杨震给YUMI的求助进行了留言
10秒前
哈密瓜子完成签到 ,获得积分10
10秒前
LS完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3596388
求助须知:如何正确求助?哪些是违规求助? 3163561
关于积分的说明 9545092
捐赠科研通 2870001
什么是DOI,文献DOI怎么找? 1575891
邀请新用户注册赠送积分活动 740409
科研通“疑难数据库(出版商)”最低求助积分说明 724152