Classification of schizophrenia from functional MRI using large-scale extended Granger causality

精神分裂症(面向对象编程) 格兰杰因果关系 计算机科学 静息状态功能磁共振成像 人工智能 心理学 相关性
作者
Axel Wismüller,M. Ali Vosoughi
标识
DOI:10.1117/12.2582039
摘要

The literature manifests that schizophrenia is associated with alterations in brain network connectivity. We investigate whether large-scale Extended Granger Causality (lsXGC) can capture such alterations using restingstate fMRI data. Our method utilizes dimension reduction combined with the augmentation of source time-series in a predictive time-series model for estimating directed causal relationships among fMRI time-series. The lsXGC is a multivariate approach since it identifies the relationship of the underlying dynamic system in the presence of all other time-series. Here lsXGC serves as a biomarker for classifying schizophrenia patients from typical controls using a subset of 62 subjects from the Centers of Biomedical Research Excellence (COBRE) data repository. We use brain connections estimated by lsXGC as features for classification. After feature extraction, we perform feature selection by Kendall’s tau rank correlation coefficient followed by classification using a support vector machine. As a reference method, we compare our results with cross-correlation, typically used in the literature as a standard measure of functional connectivity. We cross-validate 100 different training/test (90%/10%) data split to obtain mean accuracy and a mean Area Under the receiver operating characteristic Curve (AUC) across all tested numbers of features for lsXGC. Our results demonstrate a mean accuracy range of [0.767, 0.940] and a mean AUC range of [0.861, 0.983] for lsXGC. The result of lsXGC is significantly higher than the results obtained with the cross-correlation, namely mean accuracy of [0.721, 0.751] and mean AUC of [0.744, 0.860]. Our results suggest the applicability of lsXGC as a potential biomarker for schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hwl26完成签到,获得积分10
2秒前
2秒前
NiNi完成签到 ,获得积分10
2秒前
研友_ZGAeoL完成签到,获得积分10
6秒前
云等道完成签到 ,获得积分10
6秒前
投石问路完成签到,获得积分10
6秒前
浮游应助LIKUN采纳,获得10
7秒前
甜甜醉波完成签到,获得积分10
7秒前
舟行碧波上完成签到,获得积分10
7秒前
jianglili完成签到,获得积分10
8秒前
忐忑的中心完成签到,获得积分10
11秒前
仙女完成签到 ,获得积分10
14秒前
孟子完成签到 ,获得积分10
15秒前
活泼蜡烛完成签到,获得积分10
16秒前
家的温暖完成签到,获得积分10
20秒前
105完成签到 ,获得积分10
20秒前
聪慧的从雪完成签到 ,获得积分10
22秒前
疯狂的绝山完成签到 ,获得积分10
23秒前
巴达天使完成签到,获得积分10
25秒前
大好人完成签到 ,获得积分10
26秒前
1661321476完成签到,获得积分10
26秒前
青青完成签到 ,获得积分10
28秒前
sisii完成签到,获得积分10
29秒前
热心不凡完成签到,获得积分10
30秒前
leaolf完成签到,获得积分0
35秒前
racill完成签到 ,获得积分10
35秒前
所所应助Wang采纳,获得10
35秒前
蓝桉完成签到 ,获得积分10
35秒前
彩色的咖啡完成签到 ,获得积分10
35秒前
海猫食堂完成签到,获得积分10
36秒前
36秒前
37秒前
KinoFreeze完成签到 ,获得积分10
37秒前
木心o完成签到,获得积分10
38秒前
贪玩丸子完成签到 ,获得积分10
38秒前
Yanzhi完成签到,获得积分10
38秒前
40秒前
why完成签到,获得积分10
41秒前
美满的珠完成签到 ,获得积分10
42秒前
李文君完成签到 ,获得积分10
43秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347662
求助须知:如何正确求助?哪些是违规求助? 4481921
关于积分的说明 13948277
捐赠科研通 4380282
什么是DOI,文献DOI怎么找? 2406879
邀请新用户注册赠送积分活动 1399456
关于科研通互助平台的介绍 1372631