Classification of schizophrenia from functional MRI using large-scale extended Granger causality

精神分裂症(面向对象编程) 格兰杰因果关系 计算机科学 静息状态功能磁共振成像 人工智能 心理学 相关性
作者
Axel Wismüller,M. Ali Vosoughi
标识
DOI:10.1117/12.2582039
摘要

The literature manifests that schizophrenia is associated with alterations in brain network connectivity. We investigate whether large-scale Extended Granger Causality (lsXGC) can capture such alterations using restingstate fMRI data. Our method utilizes dimension reduction combined with the augmentation of source time-series in a predictive time-series model for estimating directed causal relationships among fMRI time-series. The lsXGC is a multivariate approach since it identifies the relationship of the underlying dynamic system in the presence of all other time-series. Here lsXGC serves as a biomarker for classifying schizophrenia patients from typical controls using a subset of 62 subjects from the Centers of Biomedical Research Excellence (COBRE) data repository. We use brain connections estimated by lsXGC as features for classification. After feature extraction, we perform feature selection by Kendall’s tau rank correlation coefficient followed by classification using a support vector machine. As a reference method, we compare our results with cross-correlation, typically used in the literature as a standard measure of functional connectivity. We cross-validate 100 different training/test (90%/10%) data split to obtain mean accuracy and a mean Area Under the receiver operating characteristic Curve (AUC) across all tested numbers of features for lsXGC. Our results demonstrate a mean accuracy range of [0.767, 0.940] and a mean AUC range of [0.861, 0.983] for lsXGC. The result of lsXGC is significantly higher than the results obtained with the cross-correlation, namely mean accuracy of [0.721, 0.751] and mean AUC of [0.744, 0.860]. Our results suggest the applicability of lsXGC as a potential biomarker for schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZQP发布了新的文献求助10
1秒前
Fan完成签到,获得积分10
5秒前
JamesPei应助yz123采纳,获得10
6秒前
汉堡包应助limof采纳,获得10
7秒前
完美世界应助ZQP采纳,获得10
7秒前
7秒前
7秒前
顾矜应助梧桐采纳,获得10
7秒前
Lee发布了新的文献求助10
8秒前
8秒前
w1完成签到,获得积分10
9秒前
十四发布了新的文献求助10
11秒前
Fan发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
11发布了新的文献求助10
13秒前
英俊的铭应助sxmt123456789采纳,获得10
14秒前
hh发布了新的文献求助10
14秒前
李健的粉丝团团长应助rive采纳,获得10
14秒前
饼饼发布了新的文献求助10
15秒前
renjian完成签到,获得积分10
15秒前
Mikecheng发布了新的文献求助10
16秒前
思源应助声声慢采纳,获得10
16秒前
游大侠发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
18秒前
18秒前
CodeCraft应助钢枪阿文采纳,获得10
18秒前
19秒前
风清扬应助哈呵嚯嘿呀采纳,获得10
19秒前
peekaboo发布了新的文献求助10
19秒前
Lee完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902