Low Electronic Conductivity of Li7La3Zr2O12 (LLZO) Solid Electrolytes from First Principles

电解质 锂(药物) 材料科学 电导率 快离子导体 离子 电阻率和电导率 离子电导率 电池(电)
作者
Alexander G. Squires,Daniel W. Davies,Sung-Hyun Kim,David O. Scanlon,Aron Walsh,Benjamin J. Morgan
出处
期刊:ChemRxiv
标识
DOI:10.26434/chemrxiv.13154297.v1
摘要

Lithium-rich garnets such as Li7 La3 Zr2 O12 (LLZO) are promising solid electrolytes with potential applications in all–solid-state lithium-ion batteries. The practical use of lithium-garnet electrolytes is currently limited by pervasive lithium-dendrite growth during battery cycling, which leads to short-circuiting and cell failure. One proposed mechanism for dendrite growth is the reduction of lithium ions to lithium metal within the electrolyte. Lithium garnets have been proposed to be susceptible to this growth mechanism due to high electronic conductivities [Han et al. Nature Ener. 4 187, 2019]. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterised. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally-insulating material under variable synthesis and operating conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole carrier-concentrations in bulk LLZO are negligible, irrespective of initial synthesis conditions, and electron and hole mobilities are low (<1 cm2 V−1 s−1 ). These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite formation during cell operation. Any non-negligible electronic conductivity in lithium garnets is therefore likely due to extended defects or surface contributions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
da发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
资明轩发布了新的文献求助10
4秒前
4秒前
enchanted关注了科研通微信公众号
5秒前
RUOXI完成签到,获得积分10
6秒前
OPV完成签到,获得积分0
6秒前
CodeCraft应助风笛采纳,获得10
7秒前
彭于晏应助yuanzhao采纳,获得10
7秒前
嘿帕王教官完成签到,获得积分10
7秒前
7秒前
迷路山水发布了新的文献求助20
7秒前
莎莎莎完成签到,获得积分10
8秒前
victory发布了新的文献求助10
8秒前
dl861103发布了新的文献求助30
8秒前
8秒前
LIUJIE发布了新的文献求助30
9秒前
才疏学浅完成签到,获得积分10
10秒前
11秒前
知来者发布了新的文献求助30
11秒前
wensiruocheng发布了新的文献求助10
12秒前
melo发布了新的文献求助30
12秒前
13秒前
lxy发布了新的文献求助10
13秒前
丘比特应助huyz采纳,获得10
15秒前
15秒前
16秒前
嘿撒发布了新的文献求助10
16秒前
唐嘉宏完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
深海鱼发布了新的文献求助10
17秒前
17秒前
wb完成签到,获得积分10
17秒前
18秒前
一一完成签到,获得积分20
19秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547326
求助须知:如何正确求助?哪些是违规求助? 3978277
关于积分的说明 12318591
捐赠科研通 3646879
什么是DOI,文献DOI怎么找? 2008395
邀请新用户注册赠送积分活动 1043972
科研通“疑难数据库(出版商)”最低求助积分说明 932554