Low Electronic Conductivity of Li7La3Zr2O12 (LLZO) Solid Electrolytes from First Principles

电解质 锂(药物) 材料科学 电导率 快离子导体 离子 电阻率和电导率 离子电导率 电池(电)
作者
Alexander G. Squires,Daniel W. Davies,Sung-Hyun Kim,David O. Scanlon,Aron Walsh,Benjamin J. Morgan
出处
期刊:ChemRxiv
标识
DOI:10.26434/chemrxiv.13154297.v1
摘要

Lithium-rich garnets such as Li7 La3 Zr2 O12 (LLZO) are promising solid electrolytes with potential applications in all–solid-state lithium-ion batteries. The practical use of lithium-garnet electrolytes is currently limited by pervasive lithium-dendrite growth during battery cycling, which leads to short-circuiting and cell failure. One proposed mechanism for dendrite growth is the reduction of lithium ions to lithium metal within the electrolyte. Lithium garnets have been proposed to be susceptible to this growth mechanism due to high electronic conductivities [Han et al. Nature Ener. 4 187, 2019]. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterised. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally-insulating material under variable synthesis and operating conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole carrier-concentrations in bulk LLZO are negligible, irrespective of initial synthesis conditions, and electron and hole mobilities are low (<1 cm2 V−1 s−1 ). These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite formation during cell operation. Any non-negligible electronic conductivity in lithium garnets is therefore likely due to extended defects or surface contributions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布图格其完成签到,获得积分10
1秒前
晴天完成签到 ,获得积分10
1秒前
LLL发布了新的文献求助10
3秒前
4秒前
4秒前
丘比特应助LYYYY采纳,获得10
5秒前
6秒前
感冒药发布了新的文献求助10
10秒前
Hello应助benhzh采纳,获得10
10秒前
10秒前
11秒前
narcol发布了新的文献求助30
11秒前
Lucas应助LLL采纳,获得10
12秒前
边快乐9296完成签到,获得积分10
16秒前
Esther发布了新的文献求助50
16秒前
20秒前
25秒前
27秒前
Dester驳回了Akim应助
27秒前
27秒前
香蕉寒梅发布了新的文献求助10
27秒前
Zzz发布了新的文献求助10
27秒前
pilgrim应助晨曦采纳,获得10
27秒前
han123123发布了新的文献求助10
28秒前
30秒前
30秒前
30秒前
完美世界应助初空月儿采纳,获得10
30秒前
benhzh发布了新的文献求助10
31秒前
sunguowei完成签到,获得积分20
31秒前
子南发布了新的文献求助10
31秒前
eseme发布了新的文献求助10
32秒前
33秒前
95完成签到 ,获得积分10
35秒前
lkq发布了新的文献求助10
35秒前
打打应助Henvy采纳,获得10
37秒前
鎏祈完成签到,获得积分10
37秒前
不安的小鸽子完成签到,获得积分10
37秒前
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720