期刊:Journal of electrochemical energy conversion and storage [ASME International] 日期:2020-11-05卷期号:18 (2)被引量:8
标识
DOI:10.1115/1.4048704
摘要
Abstract The capacity fade in lithium-ion battery (LIB) of high energy density using Si/C core–shell particle anode is one of the major barriers blocking its wide application. However, the underlying mechanism of electro-chemo-mechanical degradation remains unclear. In this study, we propose and validate a multiscale model (electrode level and particle level), considering electrochemical–mechanical coupling and cohesive zone method at the particle level. The effects of charging rate, core/shell ratio, and mechanical properties of the shell on the separation and capacity fade are discussed. We discover that larger charging rate, smaller core/shell ratio, and stiffer shell can mitigate the core–shell separation gap, leading to higher capacity retention. Results shed light on the degradation mechanism of Si/C core–shell anode and provide design guidance for Si/C anode materials in minimizing the capacity fade and safe battery charging/discharging strategy.