A New Method for Non-line-of-sight GNSS Signal Detection for Positioning Accuracy Improvement in Urban Environments

计算机科学 全球导航卫星系统应用 非视线传播 人工智能 伪距 计算机视觉 信号(编程语言) 实时计算 数据挖掘 全球定位系统 电信 程序设计语言 无线
作者
Zhitao Lyu,Yang Gao
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 被引量:8
标识
DOI:10.33012/2020.17662
摘要

The classification of the line-of-sight (LOS) and non-line-of-sight (NLOS) signals is one of the major problems for robust GNSS positioning and the shadow matching in urban environments. The existing techniques include the multi-sensor integration, 3D map aid, using a dual-polarized antenna, an omnidirectional camera aid are proposed to solve the classification problem. However, they all require external hardware or up-to-date map, which is expensive or impractical for mass-market applications. Consistency checking with the receiver autonomous integrity monitoring (RAIM) is widely used for the detection of NLOS signals, but it is efficient only when the majority of the received signals are LOS signals. Machine learning methods, including the decision tree, the support vector machine (SVM) have been explored to classify LOS and NLOS with good accuracy. However, all current machine learning based method only utilize information within one epoch, all the inter-epoch information and data features in time series are lost, and the information of signal propagation in the complex urban environments is not fully manifested in the Rinex level observation and NMEA level observations in one single epoch. In this paper, a multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN) based signal classification method is proposed. With the aid of the convolution layer and long short term memory block, this method handles the data features in both time domain and value domain. Six time series features of GNSS signal, including differenced C/N0, time differenced ambiguity, double difference phase and pseudorange, phase and pseudorange consistency are analyzed and used as the input of the MLSTM-FCN. Datasets from two locations in the urban Calgary are collected, each of which is used for training and testing purposes respectively. The results reveal that, compared to the SVM classification method, the overall testing accuracy of the newly proposed classifier is improved from 93.00% to 95.97% for the Rinex level observation, and from 92.99% to 93.83 for the NMEA level observation. This improved classification accuracy brought by the proposed classifier is encouraging since it will enhance the robustness of the conventional GNSS positioning and the shadow matching based navigation system by reducing unbounded NLOS signal errors in urban environments and result in significant improvement in positioning accuracy. Compared to the SVM classifier aided single point positioning (SPP) test, the accuracy in the form of RMS of the MLSTM-FCN aided SPP test can be improved by 24.3%, 17.8% and 24.4% in the East, North and Up directions respectively, and the rate of the valid solution can be increased from 99.02% to 99.94%. The new method has the potential to be widely applied by various receiver types with the output of the raw observation or only with the NMEA observations output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助加一点荒谬采纳,获得10
1秒前
科研体育生完成签到 ,获得积分10
1秒前
ldj6670完成签到,获得积分10
2秒前
品品完成签到,获得积分10
2秒前
666完成签到,获得积分10
2秒前
3秒前
龙猪发布了新的文献求助20
3秒前
McCallistery发布了新的文献求助10
3秒前
4秒前
4秒前
蓝胖子发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助小禾同学采纳,获得10
5秒前
wen应助水煮南瓜头采纳,获得10
5秒前
二十四桥明月夜完成签到,获得积分10
5秒前
木瓜完成签到,获得积分10
5秒前
CipherSage应助Stone采纳,获得10
5秒前
郭郭郭郭发布了新的文献求助10
6秒前
雨雪霏霏啊给雨雪霏霏啊的求助进行了留言
6秒前
leey完成签到,获得积分10
6秒前
整齐的大开应助May采纳,获得10
7秒前
cindy发布了新的文献求助10
7秒前
平常芷波完成签到 ,获得积分10
8秒前
jks完成签到 ,获得积分10
8秒前
享阝完成签到,获得积分10
8秒前
糊糊涂涂发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
gardenia发布了新的文献求助10
10秒前
搜集达人应助犇骉采纳,获得10
10秒前
洛北发布了新的文献求助10
10秒前
ding应助山河入梦来采纳,获得10
11秒前
水煮南瓜头完成签到,获得积分10
11秒前
Finding完成签到,获得积分10
11秒前
传奇3应助yuM采纳,获得10
11秒前
慕青应助月青悠采纳,获得10
12秒前
gilderf发布了新的文献求助10
13秒前
Stone完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708