A New Method for Non-line-of-sight GNSS Signal Detection for Positioning Accuracy Improvement in Urban Environments

计算机科学 全球导航卫星系统应用 非视线传播 人工智能 伪距 计算机视觉 信号(编程语言) 实时计算 数据挖掘 全球定位系统 电信 程序设计语言 无线
作者
Zhitao Lyu,Yang Gao
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 2972-2988 被引量:16
标识
DOI:10.33012/2020.17662
摘要

The classification of the line-of-sight (LOS) and non-line-of-sight (NLOS) signals is one of the major problems for robust GNSS positioning and the shadow matching in urban environments. The existing techniques include the multi-sensor integration, 3D map aid, using a dual-polarized antenna, an omnidirectional camera aid are proposed to solve the classification problem. However, they all require external hardware or up-to-date map, which is expensive or impractical for mass-market applications. Consistency checking with the receiver autonomous integrity monitoring (RAIM) is widely used for the detection of NLOS signals, but it is efficient only when the majority of the received signals are LOS signals. Machine learning methods, including the decision tree, the support vector machine (SVM) have been explored to classify LOS and NLOS with good accuracy. However, all current machine learning based method only utilize information within one epoch, all the inter-epoch information and data features in time series are lost, and the information of signal propagation in the complex urban environments is not fully manifested in the Rinex level observation and NMEA level observations in one single epoch. In this paper, a multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN) based signal classification method is proposed. With the aid of the convolution layer and long short term memory block, this method handles the data features in both time domain and value domain. Six time series features of GNSS signal, including differenced C/N0, time differenced ambiguity, double difference phase and pseudorange, phase and pseudorange consistency are analyzed and used as the input of the MLSTM-FCN. Datasets from two locations in the urban Calgary are collected, each of which is used for training and testing purposes respectively. The results reveal that, compared to the SVM classification method, the overall testing accuracy of the newly proposed classifier is improved from 93.00% to 95.97% for the Rinex level observation, and from 92.99% to 93.83 for the NMEA level observation. This improved classification accuracy brought by the proposed classifier is encouraging since it will enhance the robustness of the conventional GNSS positioning and the shadow matching based navigation system by reducing unbounded NLOS signal errors in urban environments and result in significant improvement in positioning accuracy. Compared to the SVM classifier aided single point positioning (SPP) test, the accuracy in the form of RMS of the MLSTM-FCN aided SPP test can be improved by 24.3%, 17.8% and 24.4% in the East, North and Up directions respectively, and the rate of the valid solution can be increased from 99.02% to 99.94%. The new method has the potential to be widely applied by various receiver types with the output of the raw observation or only with the NMEA observations output.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
michael发布了新的文献求助150
1秒前
科研通AI6应助神勇乐曲采纳,获得10
1秒前
ZJJ完成签到,获得积分10
1秒前
天天快乐应助酷炫柔采纳,获得10
1秒前
王杰秀完成签到 ,获得积分10
2秒前
higgskk发布了新的文献求助10
2秒前
余淮完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
zx598376321完成签到,获得积分0
3秒前
与离完成签到 ,获得积分10
3秒前
高兴中心发布了新的文献求助10
3秒前
标志的蚂蚁完成签到 ,获得积分10
4秒前
董晏殊完成签到,获得积分10
4秒前
venkash发布了新的文献求助10
4秒前
ShengQ完成签到,获得积分10
4秒前
史永桂完成签到,获得积分10
5秒前
5秒前
正直冰露完成签到 ,获得积分10
5秒前
贾舒涵完成签到,获得积分10
6秒前
躺平的搬砖人完成签到,获得积分10
6秒前
LamChem完成签到,获得积分20
7秒前
隐形之桃完成签到 ,获得积分10
7秒前
smh完成签到,获得积分10
7秒前
科研通AI6应助丸子采纳,获得10
7秒前
tiomooo完成签到,获得积分10
8秒前
zzk发布了新的文献求助10
8秒前
落雨寒星5520完成签到,获得积分10
8秒前
yilin完成签到 ,获得积分10
9秒前
Parrot_PAI完成签到,获得积分10
9秒前
LM完成签到 ,获得积分10
9秒前
神勇乐曲完成签到,获得积分20
9秒前
SCI发布了新的文献求助10
9秒前
9秒前
10秒前
绵马紫萁完成签到,获得积分10
10秒前
zhou完成签到,获得积分10
10秒前
任笑白完成签到 ,获得积分10
10秒前
venkash完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484