Design and Evaluation of a Deep Learning Recommendation Based Augmented Reality System for Teaching Programming and Computational Thinking

计算机科学 创造力 计算思维 逻辑推理 数学教育 深度学习 人工智能 批判性思维 过程(计算) 多媒体 程序设计语言 心理学 社会心理学
作者
Pei‐Hsuan Lin,Shih-Yeh Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 45689-45699 被引量:96
标识
DOI:10.1109/access.2020.2977679
摘要

Programming is considered a skill to arouse and inspire learner's potential. Learning to program is a complex process that requires students to write grammar and instructions. The structure of a programming language does not cause impose problems to students, the real obstacle is how to apply these learned grammars and present them in a complete and correct program code for problem solving. In this study, a deep learning recommendation system was developed, which includes augmented reality (AR) technology, and learning theory, and is provided for study by students in non-major and also from different learning backgrounds. Those students divided into two groups, the students participating in the experimental group were using the AR system with deep learning recommendation and the students participating in the control group were using the AR system without deep learning recommendation. The results show that students in experimental group perform better than the control group with regards to learning achievement. On the other hand, in the part of computational thinking ability, students using a deep learning recommendation based AR system is significantly better than those using non-deep learning recommendation based AR system. Among the various dimensions of computational thinking, creativity, logical computing, critical thinking, and problem-solving skills are significantly different among the two groups of students. The students in experimental group perform better than the control group with regards to the dimensions of computational thinking, creativity, logical computing, critical thinking, and problem-solving skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵倩完成签到,获得积分20
1秒前
英俊的铭应助ll采纳,获得10
1秒前
2秒前
知了发布了新的文献求助10
2秒前
llhh2024发布了新的文献求助10
3秒前
小马甲应助徐徐采纳,获得10
3秒前
5秒前
归尘应助赵倩采纳,获得10
5秒前
NexusExplorer应助Debra采纳,获得10
5秒前
笙声发布了新的文献求助10
5秒前
Li猪猪完成签到,获得积分10
7秒前
维维发布了新的文献求助10
7秒前
Taylor完成签到,获得积分10
8秒前
研友_LOaymZ发布了新的文献求助10
9秒前
小蘑菇应助Baekhyun采纳,获得10
10秒前
wanci应助Linda琳采纳,获得10
10秒前
11秒前
12秒前
12秒前
bkagyin应助LMZ采纳,获得30
12秒前
微笑发夹完成签到,获得积分10
13秒前
qwertnjj发布了新的文献求助10
13秒前
16秒前
17秒前
colddie发布了新的文献求助20
17秒前
FashionBoy应助美好斓采纳,获得10
17秒前
17秒前
茹茹发布了新的文献求助10
18秒前
默默懿轩完成签到,获得积分10
19秒前
险胜应助fgs采纳,获得10
20秒前
失眠无声完成签到,获得积分10
20秒前
不不鱼发布了新的文献求助20
23秒前
kiwibeta发布了新的文献求助20
24秒前
wen应助sword采纳,获得10
25秒前
25秒前
赘婿应助知了采纳,获得10
26秒前
呱呱完成签到 ,获得积分10
27秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305998
求助须知:如何正确求助?哪些是违规求助? 2939884
关于积分的说明 8494766
捐赠科研通 2614093
什么是DOI,文献DOI怎么找? 1427957
科研通“疑难数据库(出版商)”最低求助积分说明 663212
邀请新用户注册赠送积分活动 648037