Improved Artificial Potential Field Method Applied for AUV Path Planning

最大值和最小值 运动规划 仿真 路径(计算) 障碍物 避障 MATLAB语言 计算机科学 领域(数学) 势场 控制理论(社会学) 工程类 人工智能 控制(管理) 机器人 移动机器人 数学 地质学 操作系统 数学分析 经济 经济增长 程序设计语言 法学 纯数学 政治学 地球物理学
作者
Xiaojing Fan,Yinjing Guo,Hui Liu,Bowen Wei,Wenhong Lyu
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2020: 1-21 被引量:86
标识
DOI:10.1155/2020/6523158
摘要

With the topics related to the intelligent AUV, control and navigation have become one of the key researching fields. This paper presents a concise and reliable path planning method for AUV based on the improved APF method. AUV can make the decision on obstacle avoidance in terms of the state of itself and the motion of obstacles. The artificial potential field (APF) method has been widely applied in static real-time path planning. In this study, we present the improved APF method to solve some inherent shortcomings, such as the local minima and the inaccessibility of the target. A distance correction factor is added to the repulsive potential field function to solve the GNRON problem. The regular hexagon-guided method is proposed to improve the local minima problem. Meanwhile, the relative velocity method about the moving objects detection and avoidance is proposed for the dynamic environment. This method considers not only the spatial location but also the magnitude and direction of the velocity of the moving objects, which can avoid dynamic obstacles in time. So the proposed path planning method is suitable for both static and dynamic environments. The virtual environment has been built, and the emulation has been in progress in MATLAB. Simulation results show that the proposed method has promising feasibility and efficiency in the AUV real-time path planning. We demonstrate the performance of the proposed method in the real environment. Experimental results show that the proposed method is capable of avoiding the obstacles efficiently and finding an optimized path.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hm_Peng完成签到,获得积分10
1秒前
zzh完成签到,获得积分10
1秒前
JamesYang发布了新的文献求助10
2秒前
JamesYang发布了新的文献求助10
2秒前
cmuwinni完成签到,获得积分20
2秒前
bkagyin应助合适的如天采纳,获得10
3秒前
FYT关注了科研通微信公众号
3秒前
梦之完成签到 ,获得积分10
3秒前
水何澹澹完成签到,获得积分0
3秒前
lky发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
adearfish发布了新的文献求助10
4秒前
谭续燊发布了新的文献求助10
4秒前
完美世界应助PEACE采纳,获得10
4秒前
ShyerC完成签到,获得积分10
5秒前
5秒前
柚子有点甜完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
杜胤江完成签到,获得积分10
7秒前
纤孜叶完成签到,获得积分10
7秒前
7秒前
无花果应助蒸盐粥采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
可以完成签到,获得积分10
9秒前
Hu关闭了Hu文献求助
10秒前
云宝发布了新的文献求助10
10秒前
停云发布了新的文献求助10
11秒前
11秒前
NML发布了新的文献求助10
11秒前
叁拾肆完成签到,获得积分10
12秒前
狄鹤轩发布了新的文献求助10
12秒前
12秒前
wkjfh应助畅快的以寒采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095