Ultrastrong Carbon Nanotubes/Graphene Papers via Multiple π–π Cross-Linking

石墨烯 材料科学 碳纳米管 拉曼光谱 韧性 二胺 复合材料 极限抗拉强度 纳米技术 化学工程 高分子化学 光学 物理 工程类
作者
Ying Wang,Fanbin Meng,Fei Huang,Ying Li,Xin Tian,Yuan Mei,Zuowan Zhou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (42): 47811-47819 被引量:25
标识
DOI:10.1021/acsami.0c12501
摘要

Considering the extraordinary properties of graphene nanosheets, graphene-based materials from a molecular level to a macroscopic level as paper-like graphene films have recently grown for promising applications in many fields. However, there is still a major challenge in the design of the interface between adjacent graphene nanosheets so as to achieve high strength, high toughness, and high conductivity. Herein, we construct the high-performance graphene-based papers by using graphene as the matrix, carbon nanotubes (CNTs) as the reinforcement, and a long-chain molecule (1-pyrenylbutyric acid-linear diamine-1-pyrenylbutyric acid, PBA-diamine-PBA) as the bridging agent. The multiple π-π interactions between the fused rings, graphene nanosheets, and CNTs are generated among the aromatic rings of PBA, rGO, and CNTs, which significantly improve the mechanical properties and electrical properties of the cross-linked composite papers (abbreviated to CLP-X, where X is the carbon chain length). Furthermore, the linear diamines with different lengths of carbon chain affect the properties of papers after cross-linking. Especially, the as-obtained graphene-based paper (CLP-6) shows a high tensile strength (625.2 MPa), high toughness (28.5 MJ/m3), and high electrical conductivity (233.4 S/cm) as well as high solvent stability, which maintains the premium stability in different solvents. The improvement of strengthening and toughening mainly comes from the effective stress transfer and the reduction of slipping distance between rGO and CNTs during the stretching, with the help of multiple π-π cross-linking by in situ Raman analysis and simulation calculations. In addition, the high electrical conductivity leads to an excellent electromagnetic interference shielding capability (44,502 dB·cm2/g). The distinguished electric heating performance with rapid response to temperature changes is also recognized. Therefore, the proposed interface design is demonstrated as an effective way for developing a graphene-based paper with superior properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
领导范儿应助云ch采纳,获得10
刚刚
大模型应助敢甘采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
无脚鸟完成签到 ,获得积分10
2秒前
qiuwenxian0831完成签到,获得积分10
3秒前
wwz应助冉亦采纳,获得20
3秒前
风中冰蝶完成签到,获得积分10
3秒前
4秒前
4秒前
whisper完成签到 ,获得积分10
4秒前
hahaha完成签到,获得积分10
4秒前
弄青莲完成签到 ,获得积分10
5秒前
5秒前
等待的时光完成签到,获得积分10
5秒前
秀丽的正豪完成签到,获得积分10
5秒前
zhou完成签到,获得积分10
6秒前
Cissy发布了新的文献求助10
7秒前
科研小lese完成签到,获得积分10
7秒前
8秒前
搜集达人应助小墩墩采纳,获得10
8秒前
月初完成签到 ,获得积分10
8秒前
9秒前
学生完成签到,获得积分20
9秒前
清蒸鱼吖发布了新的文献求助10
9秒前
古文关注了科研通微信公众号
9秒前
9秒前
巴吉完成签到 ,获得积分10
10秒前
郭宇娟完成签到,获得积分20
10秒前
上官若男应助123不要动采纳,获得10
10秒前
hahaha发布了新的文献求助10
11秒前
ZZR发布了新的文献求助10
11秒前
zhou发布了新的文献求助10
11秒前
jing完成签到,获得积分10
11秒前
11秒前
max发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128021
求助须知:如何正确求助?哪些是违规求助? 2778916
关于积分的说明 7740639
捐赠科研通 2433969
什么是DOI,文献DOI怎么找? 1293266
科研通“疑难数据库(出版商)”最低求助积分说明 623233
版权声明 600491