From Zn-N-C to Fe-N-C: Active-Site Imprinting As a New Method for the Synthesis of Highly Active PGM-Free Catalysts for PEMFC

催化作用 质子交换膜燃料电池 过渡金属 材料科学 活动站点 化学工程 高定向热解石墨 化学 无机化学 组合化学 纳米技术 有机化学 石墨 工程类
作者
Davide Menga,Iztok Arčon,Yansheng Li,F. E. Wagner,Burak Koyutürk,Francisco Ruiz‐Zepeda,Miran Gaberšček,Hubert A. Gasteiger,Tim Patrick Fellinger
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (36): 2271-2271
标识
DOI:10.1149/ma2020-02362271mtgabs
摘要

The high cost and the restricted availability of Platinum-Group-Metals (PGM) used in current catalysts is one of the major hurdles for the large-scale commercialization of Proton Exchange Membrane Fuel Cells (PEMFCs). In the last decade, great efforts have been made to develop efficient PGM-free catalysts for the oxygen reduction reaction (ORR), especially metal-nitrogen-doped carbons (M-N-Cs, with M = Fe, Co). The activity gap towards Pt has successfully been narrowed, now reaching the activity requirements for practical applications. 1-3 For this class of catalysts, the active site is a MN 4 moiety, as known from molecules such as phthalocyanines and porphyrins. 4 Due to the metastability of the MN 4 sites at the temperature of their pyrolytic formation, the final transition metal loading is currently limited and significant amounts of inorganic byproducts are formed. Although synthesis protocols have been successfully optimized, multiple processing steps are required, making the preparation time-consuming. In this contribution we will show that Zn 2+ ions can be utilized in our novel concept of active-site imprinting, where Zn is used as template-ion in a pyrolytic process to form Zn-N-C precursor materials. 5 The Zn-N-C materials presented in this work are nitrogen-doped carbons comprising ZnN 4 sites, obtained with high yield and from inexpensive precursors. The active-site imprinted carbon supports possess high surface area and hierarchical porosity, which makes them structurally advantageous for catalytic applications in terms of mass transport and high accessibility of the active sites. Through a zinc-to-iron ion exchange reaction, Fe-N-C catalysts with high Fe loading are obtained at only 170 °C. Since the active-site formation by the Zn-to-Fe exchange reaction can be conducted at low temperatures, the structural properties of the Zn-N-C precursor material are retained. 6 Moreover, this synthetic procedure assures the absence of the otherwise obtained harmful side-phases (e.g., iron carbide). Cryo-Mössbauer and X-ray adsorption spectroscopy, supported by calculations of the extended X-ray absorption fine structure, reveal an exclusive presence of Fe as single atoms coordinated to four nitrogen atoms, i.e., in form of the desired FeN 4 moieties. Identical-location scanning transmission electron microscopy with atomic resolution is further employed to visualize the trans-metalation event. The herein obtained catalysts match the state-of-the-art electrocatalytic activity for Fe-N-C catalyts, both in a rotating disk electrode and in single cell PEMFC measurements. The novel synthesis method will be discussed regarding its advantages and disadvantages compared to the conventional pyrolytic M-N-C catalyst syntheses, with a focus on the potential to surpass the current limitations of restricted active-site density and catalyst stability. ACKNOWLEDGEMENTS: The German Federal Ministry of Economic Affairs and Energy (BMWi) is acknowledged for funding within the Verbundproject innoKA (Project No.: 03ET6096A) REFERENCES: M. Lefèvre, E. Proietti, F. Jaouen and J.-P. Dodelet, Science , 2009, 324 , 71-74. R. Bashyam and P. Zelenay, Nature , 2006, 443 , 63-66. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Applied Catalysis B , 2005, 56 , 9-35. Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li, A. Serov, K. Artyushkova, P. Atanassov, J. Anibal, C. Gumeci, S. C. Barton, M.-T. Sougrati, F. Jaouen, B. Halevi and S. Mukerjee, Nano Energy , 2016, 29 , 65-82. A. Mehmood, J. Pampel, G. Ali, H. Y. Ha, F. Ruiz-Zepeda and T.-P. Fellinger, Advanced Energy Materials , 2018, 8 . D. Menga, F. Ruiz-Zepeda, L. Moriau, M. Šala, F. Wagner, B. Koyutürk, M. Bele, U. Petek, N. Hodnik, M. Gaberšček and T.-P. Fellinger, Advanced Energy Materials , 2019, 9 , 1902412. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiptip完成签到,获得积分10
刚刚
飞翔的霸天哥应助石人采纳,获得30
刚刚
Accept完成签到,获得积分10
1秒前
2秒前
一路有你完成签到 ,获得积分10
2秒前
3秒前
科研通AI6应助直率书包采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
无花果应助谦让鹏涛采纳,获得10
6秒前
7秒前
小青椒应助海蓝云天采纳,获得30
8秒前
LIZ发布了新的文献求助10
8秒前
8秒前
可爱的函函应助123采纳,获得20
8秒前
充电宝应助123采纳,获得10
9秒前
9秒前
娄思菊完成签到,获得积分10
10秒前
ZWT完成签到,获得积分20
10秒前
11秒前
Lancet发布了新的文献求助10
11秒前
CodeCraft应助贺兰采纳,获得10
11秒前
12秒前
无花果应助着急的蜗牛采纳,获得10
13秒前
浮游应助清爽念文采纳,获得10
13秒前
dreamode应助好想吃李子采纳,获得20
13秒前
13秒前
yixi发布了新的文献求助10
13秒前
Owen应助深海蓝鱼采纳,获得10
14秒前
高登登发布了新的文献求助10
15秒前
15秒前
16秒前
lls发布了新的文献求助10
16秒前
诸葛一笑完成签到,获得积分20
16秒前
16秒前
顾矜应助郭紫薇采纳,获得10
17秒前
17秒前
科研通AI2S应助小翟采纳,获得10
17秒前
发酱完成签到,获得积分10
18秒前
hrpppp发布了新的文献求助10
18秒前
香蕉觅云应助suzy-123采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653351
求助须知:如何正确求助?哪些是违规求助? 4789770
关于积分的说明 15063822
捐赠科研通 4811874
什么是DOI,文献DOI怎么找? 2574163
邀请新用户注册赠送积分活动 1529858
关于科研通互助平台的介绍 1488577