DGaze: CNN-Based Gaze Prediction in Dynamic Scenes

凝视 计算机科学 人工智能 计算机视觉 渲染(计算机图形) 突出 眼动 虚拟现实 可视化
作者
Zhiming Hu,Sheng Li,Congyi Zhang,Kangrui Yi,Guoping Wang,Dinesh Manocha
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 1902-1911 被引量:59
标识
DOI:10.1109/tvcg.2020.2973473
摘要

We conduct novel analyses of users' gaze behaviors in dynamic virtual scenes and, based on our analyses, we present a novel CNN-based model called DGaze for gaze prediction in HMD-based applications. We first collect 43 users' eye tracking data in 5 dynamic scenes under free-viewing conditions. Next, we perform statistical analysis of our data and observe that dynamic object positions, head rotation velocities, and salient regions are correlated with users' gaze positions. Based on our analysis, we present a CNN-based model (DGaze) that combines object position sequence, head velocity sequence, and saliency features to predict users' gaze positions. Our model can be applied to predict not only realtime gaze positions but also gaze positions in the near future and can achieve better performance than prior method. In terms of realtime prediction, DGaze achieves a 22.0% improvement over prior method in dynamic scenes and obtains an improvement of 9.5% in static scenes, based on using the angular distance as the evaluation metric. We also propose a variant of our model called DGaze_ET that can be used to predict future gaze positions with higher precision by combining accurate past gaze data gathered using an eye tracker. We further analyze our CNN architecture and verify the effectiveness of each component in our model. We apply DGaze to gaze-contingent rendering and a game, and also present the evaluation results from a user study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公西白翠发布了新的文献求助10
刚刚
浩浩浩完成签到,获得积分10
刚刚
windy发布了新的文献求助10
1秒前
风趣思山完成签到,获得积分20
1秒前
1秒前
Ava应助略略略采纳,获得10
1秒前
Ivy发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
此生不换完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
黄大大发布了新的文献求助10
4秒前
小赵发布了新的文献求助10
4秒前
蜡笔小新完成签到,获得积分10
4秒前
5秒前
5秒前
2010完成签到,获得积分10
5秒前
南桥发布了新的文献求助10
6秒前
6秒前
研友_841KWL完成签到,获得积分10
6秒前
cy完成签到,获得积分10
6秒前
yuanbai应助欢喜蛋挞采纳,获得30
6秒前
朱信姿发布了新的文献求助10
8秒前
NexusExplorer应助yutian采纳,获得10
8秒前
ding应助小太阳采纳,获得10
9秒前
想个昵称怪费劲完成签到,获得积分10
9秒前
UUU完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
hyman1218完成签到,获得积分10
11秒前
rrrrrr发布了新的文献求助10
11秒前
12秒前
雪兔妹妹完成签到,获得积分10
13秒前
mailure完成签到,获得积分10
13秒前
华仔应助完美的皮卡丘采纳,获得10
13秒前
小蘑菇应助王富贵采纳,获得10
15秒前
15秒前
小彻完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515