High grafting strength from chemically bonded 2D layered material onto carbon microfibres for reinforced composites and ultra-long flexible cable electronic devices

材料科学 复合材料 超级电容器 X射线光电子能谱 石墨烯 拉曼光谱 嫁接 电解质 碳纤维 复合数 共价键 表面改性 电化学 纳米技术 化学工程 电极 聚合物 化学 物理 光学 物理化学 量子力学 工程类
作者
Mohammad S. Islam,Yan Deng,Liyong Tong,Shaikh Nayeem Faisal,Anup Roy,Andrew I. Minett
出处
期刊:Materials today communications [Elsevier]
卷期号:24: 100994-100994 被引量:2
标识
DOI:10.1016/j.mtcomm.2020.100994
摘要

Surface modification of carbon microfibres (CF) represents a promising and challenging alternative for creating multiscale and multifunctional hierarchical lightweight high-performance composite materials. In this study, a low-temperature chemical method is developed to graft layered graphene oxide (GO) directly onto CF through covalent bonding, and the grafting is characterised by SEM, FTIR, Raman and XPS spectroscopy. The GO failure stress (FS) measured using in situ nanomechanical pull-out tests is 36.2% higher than the literature values. Since GO fracture is the only breaking mechanism observed, there exists a strong carbon-carbon covalent bonding at the GO-CF interface indicating that the actual grafting strength (GS) is greater than the FS obtained. This elevated GS can substantially increase the interfacial and impact properties necessary in high performance composites. CF and GO-CF are fabricated to current-collector free ultra-long flexible cable-supercapacitors and their electrochemical properties in gel electrolyte are systematically investigated. GO-CF supercapacitor leads to an electrochemical capacitance of 7.8 F cm−3 and an energy density of 6.93 × 10−4 Wh cm−3 at 0.02 A cm−3. Thus, these grafted materials along with advanced composites have substantial promise in ultra-long flexible cable electronics with superior strengths and performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chai发布了新的文献求助10
刚刚
刚刚
刚刚
yt发布了新的文献求助10
1秒前
五1232发布了新的文献求助10
1秒前
坦率的曲奇完成签到,获得积分10
1秒前
3秒前
4秒前
NOT发布了新的文献求助10
6秒前
7秒前
Archie发布了新的文献求助30
7秒前
平方完成签到,获得积分10
7秒前
cym完成签到,获得积分10
7秒前
Jin完成签到 ,获得积分10
8秒前
77完成签到 ,获得积分10
9秒前
shanshan发布了新的文献求助10
9秒前
10秒前
10秒前
哈哈完成签到,获得积分20
10秒前
11秒前
11秒前
13秒前
西柚稀有西柚完成签到,获得积分10
13秒前
碧蓝怜梦发布了新的文献求助10
13秒前
充电宝应助ln采纳,获得30
14秒前
我是老大应助Archie采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
科研通AI6应助燕子采纳,获得10
17秒前
哈哈发布了新的文献求助10
17秒前
科研通AI6应助DD采纳,获得10
17秒前
sun发布了新的文献求助30
17秒前
唐ZY123发布了新的文献求助30
17秒前
深情安青应助CMJ采纳,获得10
18秒前
19秒前
19秒前
20秒前
疆男完成签到,获得积分10
20秒前
心静如水发布了新的文献求助10
20秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025