作者
Shiqing Zhou,Qiulan Luo,Xi Tan,Wei Huang,Xiaocong Feng,Tingting Zhang,Wenyong Chen,Chaojie Yang,Yunying Li
摘要
Abstract Ethnopharmacological relevance Laryngeal carcinoma (LC) is one of the most common malignant head and neck cancers with high incidence and mortality rates. Erchen decoction plus Huiyanzhuyu decoction (EHD) is commonly used for treating LC patients and produces beneficial results. However, the mechanisms underlying the effects of EHD remain unclear. Aim of the study The present study aimed to analyse the anticancer effects of EHD on the LC cell cycle, apoptosis, migration and invasion in vitro and to explore the underlying biological mechanisms. Materials and methods TU212 and Hep-2 cells were used. The antitumour effects of EHD were detected by CCK8, microscopy, flow cytometry, EdU incorporation, Hoechst 33342 staining, wound-healing, and transwell assays to assess viability, morphology, apoptosis, cell cycle, migration and invasion, respectively. Furthermore, STAT3 and related proteins were evaluated in laryngeal squamous cell carcinoma (LSCC) cells by Western blot (WB) analysis. Results EHD treatment significantly decreased STAT3 and p-STAT3 protein expression levels in LSCC cells. EHD blocked the cell cycle at the G0/G1 phase and induced LSCC apoptosis. Moreover, the viability, migration, and invasion of LSCC cells were markedly inhibited by EHD. In addition, the expression of the cell cycle-related proteins cyclin D1 and cyclin B1 was downregulated in LSCC cells, but P27 expression was increased after EHD treatment. Regarding apoptosis-related proteins, EHD also reduced Bcl-2 expression but upregulated Bax and caspase-3 expression in LSCC cells. In the migration- and invasion-related protein analyses, EHD downregulated MMP-9 expression and upregulated E-cadherin expression. Conclusions These results suggest that EHD has an anticancer effect in LSCC. EHD treatment induces apoptosis and inhibits the cell cycle, migration and invasion of LSCC cells, but further work is warranted to address the mechanisms.