Research on Virtual Path Planning Based on Improved DQN

计算机科学 运动规划 路径(计算) 人工智能 机器人
作者
Cheng Yi,Meng Qi
出处
期刊:IEEE International Conference on Real-time Computing and Robotics 卷期号:: 387-392
标识
DOI:10.1109/rcar49640.2020.9303290
摘要

An end-to-end approach based on the theory of Deep Reinforcement Learning has been proven to be able to meet or exceed human-level strategic capabilities. Applying this learning algorithm to path planning methods can make robots self-contained learning ability and environment interaction ability, and increased generalization ability. In this paper, Deep Q Network (DQN) as the typical Deep Reinforcement Learning method is improved. Improvement points can be divided into two steps. Firstly, the two steps of the selection of actions in the current network and how to calculate the target Q value are decoupled to eliminate overestimation caused by the rapid optimization of Q value in the possible direction. Then, considering that the action value function can bring benefits in addition to the action with the greatest value made by the agent, the static environment also has certain influence, the final result is a linear combination of two parts, which is to estimate the value functions of the upper, lower, left and right actions of the neural network output and the value of the environment state itself. Under the same experimental conditions, the improved DQN network is compared with the original DQN network, the result shows that the estimated final target value function of improved DQN network is more accurate and effective for virtual path planning tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sharkmelon应助Amo采纳,获得10
刚刚
1秒前
wabfye完成签到,获得积分20
1秒前
1秒前
星辰大海应助明天的我采纳,获得10
1秒前
iNk应助科科采纳,获得10
1秒前
2秒前
2秒前
zgrmws应助怡然的夏之采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
thunder完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
KAZEN发布了新的文献求助20
4秒前
满意的聋五完成签到,获得积分10
5秒前
5秒前
漫漫完成签到,获得积分10
5秒前
英姑应助高贵的如曼采纳,获得10
5秒前
5秒前
斯文的馒头完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
桐桐应助欢欢采纳,获得30
6秒前
cablebot发布了新的文献求助10
7秒前
梦会故乡发布了新的文献求助10
7秒前
niNe3YUE应助结实的XMZ采纳,获得10
7秒前
科目三应助mlx采纳,获得10
7秒前
gstaihn发布了新的文献求助10
8秒前
zhihaiyu完成签到,获得积分10
8秒前
尘晨发布了新的文献求助10
9秒前
刘英岑发布了新的文献求助10
9秒前
smottom应助小贱采纳,获得10
9秒前
踏雾发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163