Research on Virtual Path Planning Based on Improved DQN

计算机科学 运动规划 路径(计算) 人工智能 机器人
作者
Cheng Yi,Meng Qi
出处
期刊:IEEE International Conference on Real-time Computing and Robotics 卷期号:: 387-392
标识
DOI:10.1109/rcar49640.2020.9303290
摘要

An end-to-end approach based on the theory of Deep Reinforcement Learning has been proven to be able to meet or exceed human-level strategic capabilities. Applying this learning algorithm to path planning methods can make robots self-contained learning ability and environment interaction ability, and increased generalization ability. In this paper, Deep Q Network (DQN) as the typical Deep Reinforcement Learning method is improved. Improvement points can be divided into two steps. Firstly, the two steps of the selection of actions in the current network and how to calculate the target Q value are decoupled to eliminate overestimation caused by the rapid optimization of Q value in the possible direction. Then, considering that the action value function can bring benefits in addition to the action with the greatest value made by the agent, the static environment also has certain influence, the final result is a linear combination of two parts, which is to estimate the value functions of the upper, lower, left and right actions of the neural network output and the value of the environment state itself. Under the same experimental conditions, the improved DQN network is compared with the original DQN network, the result shows that the estimated final target value function of improved DQN network is more accurate and effective for virtual path planning tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪慧的怀绿完成签到,获得积分10
1秒前
1秒前
lee完成签到 ,获得积分10
2秒前
3秒前
kiminonawa应助甜甜谷波采纳,获得10
3秒前
Abyxwz发布了新的文献求助10
3秒前
3秒前
4秒前
wly发布了新的文献求助10
4秒前
4秒前
5秒前
Una完成签到,获得积分10
5秒前
小野发布了新的文献求助10
5秒前
852应助艾可白采纳,获得10
6秒前
李爱国应助ST采纳,获得10
6秒前
酷波er应助哒哒哒采纳,获得10
7秒前
7秒前
GXWFDC完成签到 ,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
虎啊虎啊发布了新的文献求助10
10秒前
10秒前
墨染完成签到 ,获得积分10
11秒前
11秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Return应助科研通管家采纳,获得10
12秒前
rebubu应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
852应助科研通管家采纳,获得10
12秒前
12秒前
chen应助科研通管家采纳,获得10
12秒前
游子轩应助科研通管家采纳,获得10
13秒前
123456完成签到,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Return应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800