Research on Virtual Path Planning Based on Improved DQN

计算机科学 运动规划 路径(计算) 人工智能 机器人
作者
Cheng Yi,Meng Qi
出处
期刊:IEEE International Conference on Real-time Computing and Robotics 卷期号:: 387-392
标识
DOI:10.1109/rcar49640.2020.9303290
摘要

An end-to-end approach based on the theory of Deep Reinforcement Learning has been proven to be able to meet or exceed human-level strategic capabilities. Applying this learning algorithm to path planning methods can make robots self-contained learning ability and environment interaction ability, and increased generalization ability. In this paper, Deep Q Network (DQN) as the typical Deep Reinforcement Learning method is improved. Improvement points can be divided into two steps. Firstly, the two steps of the selection of actions in the current network and how to calculate the target Q value are decoupled to eliminate overestimation caused by the rapid optimization of Q value in the possible direction. Then, considering that the action value function can bring benefits in addition to the action with the greatest value made by the agent, the static environment also has certain influence, the final result is a linear combination of two parts, which is to estimate the value functions of the upper, lower, left and right actions of the neural network output and the value of the environment state itself. Under the same experimental conditions, the improved DQN network is compared with the original DQN network, the result shows that the estimated final target value function of improved DQN network is more accurate and effective for virtual path planning tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi111发布了新的文献求助10
刚刚
平常的含雁应助靜心采纳,获得20
刚刚
黄函发布了新的文献求助10
1秒前
乔晶完成签到,获得积分10
2秒前
FashionBoy应助taku采纳,获得10
2秒前
Glacier完成签到,获得积分10
2秒前
852应助花花采纳,获得10
3秒前
4秒前
星河zp发布了新的文献求助10
4秒前
鲸鱼关注了科研通微信公众号
4秒前
用户5063899完成签到,获得积分10
5秒前
6秒前
6秒前
LinglongCai完成签到 ,获得积分10
8秒前
莘莘完成签到 ,获得积分10
9秒前
黄函完成签到,获得积分10
9秒前
蛋堡完成签到 ,获得积分10
11秒前
wanghe发布了新的文献求助10
12秒前
WM应助温暖寻雪采纳,获得10
12秒前
可爱的函函应助第三采纳,获得10
13秒前
13秒前
wqwqwqwqwq发布了新的文献求助10
13秒前
pzy123发布了新的文献求助10
14秒前
lsy发布了新的文献求助10
16秒前
17秒前
动听的雪卉给动听的雪卉的求助进行了留言
18秒前
cjch发布了新的文献求助10
18秒前
狐尾完成签到,获得积分10
18秒前
19秒前
21秒前
taku发布了新的文献求助10
21秒前
小鸭子应助wanghe采纳,获得10
21秒前
小新发布了新的文献求助10
26秒前
小田发布了新的文献求助10
26秒前
Leif应助qiu采纳,获得20
27秒前
共享精神应助zyh采纳,获得10
27秒前
28秒前
李健的小迷弟应助浅辰采纳,获得10
28秒前
29秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313480
求助须知:如何正确求助?哪些是违规求助? 2945844
关于积分的说明 8527242
捐赠科研通 2621522
什么是DOI,文献DOI怎么找? 1433713
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650600