Research on Virtual Path Planning Based on Improved DQN

计算机科学 运动规划 路径(计算) 人工智能 机器人
作者
Cheng Yi,Meng Qi
出处
期刊:IEEE International Conference on Real-time Computing and Robotics 卷期号:: 387-392
标识
DOI:10.1109/rcar49640.2020.9303290
摘要

An end-to-end approach based on the theory of Deep Reinforcement Learning has been proven to be able to meet or exceed human-level strategic capabilities. Applying this learning algorithm to path planning methods can make robots self-contained learning ability and environment interaction ability, and increased generalization ability. In this paper, Deep Q Network (DQN) as the typical Deep Reinforcement Learning method is improved. Improvement points can be divided into two steps. Firstly, the two steps of the selection of actions in the current network and how to calculate the target Q value are decoupled to eliminate overestimation caused by the rapid optimization of Q value in the possible direction. Then, considering that the action value function can bring benefits in addition to the action with the greatest value made by the agent, the static environment also has certain influence, the final result is a linear combination of two parts, which is to estimate the value functions of the upper, lower, left and right actions of the neural network output and the value of the environment state itself. Under the same experimental conditions, the improved DQN network is compared with the original DQN network, the result shows that the estimated final target value function of improved DQN network is more accurate and effective for virtual path planning tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助诚心谷南采纳,获得10
1秒前
1秒前
懒洋洋完成签到,获得积分10
1秒前
凉城杰完成签到,获得积分10
1秒前
且泛轻舟发布了新的文献求助50
2秒前
王小明发布了新的文献求助10
2秒前
CipherSage应助lolly采纳,获得10
2秒前
搜集达人应助葛藟萦藤采纳,获得10
2秒前
3秒前
keke发布了新的文献求助10
4秒前
4秒前
大风起兮发布了新的文献求助10
5秒前
lll完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
加油完成签到,获得积分10
7秒前
且泛轻舟完成签到,获得积分10
8秒前
CipherSage应助大风起兮采纳,获得10
10秒前
10秒前
yzz发布了新的文献求助20
10秒前
慕涔完成签到,获得积分10
10秒前
10秒前
znn发布了新的文献求助10
11秒前
吖吖吖亚完成签到,获得积分10
11秒前
BREEZE发布了新的文献求助10
11秒前
烟沿衍言完成签到,获得积分10
12秒前
茜茜完成签到 ,获得积分10
13秒前
13秒前
SYLH应助liam采纳,获得30
14秒前
15秒前
多泽应助朴实的面包采纳,获得20
15秒前
默默的棉花糖完成签到,获得积分10
16秒前
Ayu王完成签到,获得积分10
16秒前
追光发布了新的文献求助30
16秒前
lolly完成签到,获得积分10
17秒前
云上人发布了新的文献求助10
17秒前
放空的酸奶完成签到,获得积分10
18秒前
没出门发布了新的文献求助10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842525
求助须知:如何正确求助?哪些是违规求助? 3384644
关于积分的说明 10536237
捐赠科研通 3105132
什么是DOI,文献DOI怎么找? 1710053
邀请新用户注册赠送积分活动 823486
科研通“疑难数据库(出版商)”最低求助积分说明 774091