Research on Virtual Path Planning Based on Improved DQN

计算机科学 运动规划 路径(计算) 人工智能 机器人
作者
Cheng Yi,Meng Qi
出处
期刊:IEEE International Conference on Real-time Computing and Robotics 卷期号:: 387-392
标识
DOI:10.1109/rcar49640.2020.9303290
摘要

An end-to-end approach based on the theory of Deep Reinforcement Learning has been proven to be able to meet or exceed human-level strategic capabilities. Applying this learning algorithm to path planning methods can make robots self-contained learning ability and environment interaction ability, and increased generalization ability. In this paper, Deep Q Network (DQN) as the typical Deep Reinforcement Learning method is improved. Improvement points can be divided into two steps. Firstly, the two steps of the selection of actions in the current network and how to calculate the target Q value are decoupled to eliminate overestimation caused by the rapid optimization of Q value in the possible direction. Then, considering that the action value function can bring benefits in addition to the action with the greatest value made by the agent, the static environment also has certain influence, the final result is a linear combination of two parts, which is to estimate the value functions of the upper, lower, left and right actions of the neural network output and the value of the environment state itself. Under the same experimental conditions, the improved DQN network is compared with the original DQN network, the result shows that the estimated final target value function of improved DQN network is more accurate and effective for virtual path planning tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starlx0813发布了新的文献求助10
刚刚
1秒前
纯真的盼柳完成签到,获得积分10
1秒前
温婉的凝丹完成签到,获得积分10
1秒前
2秒前
胡姬花发布了新的文献求助10
3秒前
3秒前
3秒前
蓦然发布了新的文献求助10
4秒前
4秒前
852应助喜悦的皮卡丘采纳,获得10
4秒前
4秒前
鸭爪爪发布了新的文献求助10
5秒前
6秒前
6秒前
Ankie发布了新的文献求助10
6秒前
Akira发布了新的文献求助10
6秒前
7秒前
lili完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
勤劳的斑马完成签到,获得积分10
10秒前
10秒前
完美世界应助Windycityguy采纳,获得10
10秒前
深情安青应助starlx0813采纳,获得10
11秒前
11秒前
义气丹雪应助细腻听白采纳,获得100
11秒前
Re发布了新的文献求助10
11秒前
科研通AI6.1应助热情千风采纳,获得10
12秒前
雨柏完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
16秒前
orixero应助年轻就要气盛采纳,获得10
17秒前
violet完成签到,获得积分20
18秒前
充电宝应助健忘的雨安采纳,获得10
20秒前
dfggg发布了新的文献求助10
20秒前
饱满的问丝完成签到,获得积分10
21秒前
22秒前
大水完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848