The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability

人工智能 计算机科学 鉴定(生物学) 机器学习 药物发现 基因组学 数据科学 领域(数学) 产品(数学) 天然产物 计算基因组学 生物医学文本挖掘 生物信息学 自然语言处理 基因组 生物 文本挖掘 几何学 基因 植物 生物化学 纯数学 数学
作者
David Příhoda,Julia M. Maritz,Ondřej Klempíř,Dávid Džamba,Christopher H. Woelk,Daria J. Hazuda,Danny A. Bitton,Geoffrey D. Hannigan
出处
期刊:Natural Product Reports [The Royal Society of Chemistry]
卷期号:38 (6): 1100-1108 被引量:33
标识
DOI:10.1039/d0np00055h
摘要

Covering: up to the end of 2020. The machine learning field can be defined as the study and application of algorithms that perform classification and prediction tasks through pattern recognition instead of explicitly defined rules. Among other areas, machine learning has excelled in natural language processing. As such methods have excelled at understanding written languages (e.g. English), they are also being applied to biological problems to better understand the "genomic language". In this review we focus on recent advances in applying machine learning to natural products and genomics, and how those advances are improving our understanding of natural product biology, chemistry, and drug discovery. We discuss machine learning applications in genome mining (identifying biosynthetic signatures in genomic data), predictions of what structures will be created from those genomic signatures, and the types of activity we might expect from those molecules. We further explore the application of these approaches to data derived from complex microbiomes, with a focus on the human microbiome. We also review challenges in leveraging machine learning approaches in the field, and how the availability of other "omics" data layers provides value. Finally, we provide insights into the challenges associated with interpreting machine learning models and the underlying biology and promises of applying machine learning to natural product drug discovery. We believe that the application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的紫霜完成签到,获得积分10
刚刚
Rheane发布了新的文献求助10
1秒前
chenyu完成签到,获得积分10
1秒前
烟花应助999采纳,获得10
2秒前
3秒前
可爱的函函应助ftdwccch采纳,获得10
3秒前
hh完成签到,获得积分10
4秒前
笨笨猪发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助悠悠采纳,获得10
7秒前
7秒前
10秒前
shifeng完成签到,获得积分20
10秒前
星辰大海应助puyuanting采纳,获得10
11秒前
小丁完成签到 ,获得积分10
11秒前
LHS完成签到,获得积分10
12秒前
12秒前
bgbgbg发布了新的文献求助10
12秒前
脑洞疼应助自觉亦绿采纳,获得10
13秒前
Janel关注了科研通微信公众号
13秒前
shifeng发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
白问寒完成签到,获得积分10
17秒前
17秒前
17秒前
萧水白应助帅气小霜采纳,获得10
19秒前
19秒前
上善若水发布了新的文献求助10
20秒前
999发布了新的文献求助10
20秒前
21秒前
21秒前
Maggie发布了新的文献求助30
21秒前
自觉亦绿发布了新的文献求助10
23秒前
lhw完成签到,获得积分10
24秒前
cui发布了新的文献求助10
25秒前
25秒前
科研通AI2S应助waq采纳,获得10
25秒前
min完成签到 ,获得积分10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233417
求助须知:如何正确求助?哪些是违规求助? 2879936
关于积分的说明 8213289
捐赠科研通 2547370
什么是DOI,文献DOI怎么找? 1376892
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623144