IncNSA: Detecting communities incrementally from time-evolving networks based on node similarity

快照(计算机存储) 计算机科学 群落结构 复杂网络 不断发展的网络 数据挖掘 人工智能 数学 操作系统 组合数学 万维网
作者
Xing Su,Jianjun Cheng,Haijuan Yang,Mingwei Leng,Wenbo Zhang,Xiaoyun Chen
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:31 (07): 2050094-2050094 被引量:13
标识
DOI:10.1142/s0129183120500941
摘要

Many real-world systems can be abstracted as networks. As those systems always change dynamically in nature, the corresponding networks also evolve over time in general, and detecting communities from such time-evolving networks has become a critical task. In this paper, we propose an incremental detection method, which can stably detect high-quality community structures from time-evolving networks. When the network evolves from the previous snapshot to the current one, the proposed method only considers the community affiliations of partial nodes efficiently, which are either newborn nodes or some active nodes from the previous snapshot. Thus, the first phase of our method is determining active nodes that should be reassigned due to the change of their community affiliations in the evolution. Then, we construct subgraphs for these nodes to obtain the preliminary communities in the second phase. Finally, the final result can be obtained through optimizing the primary communities in the third phase. To test its performance, extensive experiments are conducted on both some synthetic networks and some real-world dynamic networks, the results show that our method can detect satisfactory community structure from each of snapshot graphs efficiently and steadily, and outperforms the competitors significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大胆傲芙采纳,获得10
刚刚
1秒前
我是老大应助黑马王子采纳,获得10
1秒前
健忘聪健发布了新的文献求助10
1秒前
Sunny完成签到,获得积分10
2秒前
2秒前
fairy发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
浮梦完成签到,获得积分10
3秒前
辛勤母鸡完成签到 ,获得积分10
3秒前
九三发布了新的文献求助10
4秒前
小新完成签到 ,获得积分10
4秒前
海里的中尉完成签到,获得积分10
4秒前
咸鱼发布了新的文献求助10
4秒前
科研通AI6应助kk采纳,获得10
4秒前
4秒前
此生长安完成签到,获得积分10
5秒前
脑洞疼应助我爱科研采纳,获得10
5秒前
xxxx发布了新的文献求助10
5秒前
5秒前
5秒前
Akim应助螺旋向上采纳,获得30
5秒前
隐形听寒发布了新的文献求助10
6秒前
asdfqwer应助xuan采纳,获得10
6秒前
Irony完成签到,获得积分10
6秒前
6秒前
研友_nPbeR8发布了新的文献求助10
6秒前
6秒前
pu66发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
此生长安发布了新的文献求助10
7秒前
7秒前
zhang123发布了新的文献求助10
7秒前
二三发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879