合金
钇
材料科学
金属间化合物
微观结构
锰
氢气储存
铬
氢
解吸
相(物质)
冶金
物理化学
化学
吸附
有机化学
氧化物
作者
Tai Yang,Peng Wang,Chaoqun Xia,Ning Liu,Chunyong Liang,Fuxing Yin,Qiang Li
标识
DOI:10.1016/j.ijhydene.2020.02.086
摘要
In this paper, we report the microstructure and hydrogen storage properties of TiFe-based alloys containing chromium (Cr), manganese (Mn) and yttrium (Y). Four alloy samples with chemical composition of TiFe0.9Cr0.1, TiFe0.9Cr0.1Y0.05, TiFe0.9Mn0.1 and TiFe0.9Mn0.1Y0.05 were prepared by arc melting, and the effects of alloying elements Cr, Mn and Y on microstructure and hydrogenation kinetics and thermodynamics were investigated in detail. It was found that all the four alloys have the main phase of TiFe intermetallic compound. A small amount of secondary phase can be also detected in the alloy samples. Cr substituted alloys have larger lattice parameters than that of Mn substituted alloys. Y in the alloys is mainly existed in the form of α-Y phase, and it transform into YH3 during hydrogenation process. Very sloped equilibrium plateau regions are observed in Cr substituted alloys, while the Mn substituted alloys have flat equilibrium plateaus. Y addition has almost no influence on pressure–composition–isotherm (p–c–T) curves of Cr substituted alloy, but slightly decrease the equilibrium plateaus of Mn substituted alloys. Hydrogen absorption and desorption kinetics strongly depend on the equilibrium plateau pressures. As a result, the Cr substituted alloys with lower equilibrium plateau pressure have faster hydrogen absorption and slower desorption kinetics compared with Mn substituted alloys. The Cr substituted alloys have poor powdering resistance compared with Mn substituted alloys during hydrogenation cycles, which can be ascribed to the higher hardness of alloy matrix caused by Cr substitution.
科研通智能强力驱动
Strongly Powered by AbleSci AI