甲基苯丙胺
NMDA受体
精神分裂症(面向对象编程)
受体
药理学
苯环己定
神经科学
蛋白质亚单位
心理学
医学
精神科
化学
内科学
生物化学
基因
作者
Matsuhiko Oka,Koki Ito,Minori Koga,Ichiro Kusumi
标识
DOI:10.1016/j.pnpbp.2020.109984
摘要
The dopamine and glutamate hypotheses reflect only some of the pathophysiological changes associated with schizophrenia. We have proposed a new "comprehensive progressive pathophysiology model" based on the "dopamine to glutamate hypothesis." Repeated administration of methamphetamine (METH) at a dose of 2.5 mg/kg in rats has been used to assess dynamic changes in the pathophysiology of schizophrenia. Previous use of this model suggested N-methyl-d-aspartate receptor (NMDA-R) dysfunction, but the mechanism could only be inferred from limited, indirect observations. In the present study, we used this model to investigate changes in the expression of NMDA-R subunits. Repeated administration of METH significantly decreased the gene expression levels of glutamate ionotropic receptor NMDA type subunit (Grin) subtypes Grin1 and Grin2c in the prefrontal cortex (PFC), Grin1 and Grin2a in the hippocampus (HPC), and Grin1, Grin2b, and Grin2d in the striatum (ST).We observed a significant difference in Grin1 expression between the PFC and ST. Furthermore, repeated administration of METH significantly decreased the protein expression of GluN1 in both cytosolic and synaptosomal fractions isolated from the PFC, and significantly decreased the protein expression of GluN1 in the cytosolic fraction, but not the synaptosomal fraction from the ST. These regional differences may be due to variations in the synthesis of GluN1 or intracellular trafficking events in each area of the brain. Considering that knockdown of Grin1 in mice affects vulnerability to develop schizophrenia, these results suggest that this model reflects some of the pathophysiological changes of schizophrenia, combining both the dopamine and glutamate hypotheses.
科研通智能强力驱动
Strongly Powered by AbleSci AI