基态
哈特里-福克法
原子轨道
化学
耦合簇
分子轨道
电子结构
福克空间
国家(计算机科学)
齐次空间
能量(信号处理)
星团(航天器)
统计物理学
计算物理学
原子物理学
算法
计算化学
计算机科学
量子力学
分子
物理
数学
几何学
电子
程序设计语言
作者
Yixiao Chen,Linfeng Zhang,Han Wang,E Weinan
标识
DOI:10.1021/acs.jpca.0c03886
摘要
We introduce the Deep Post-Hartree-Fock (DeePHF) method, a machine learning based scheme for constructing accurate and transferable models for the ground-state energy of electronic structure problems. DeePHF predicts the energy difference between results of highly accurate models such as the coupled cluster method and low accuracy models such as the the Hartree-Fock (HF) method, using the ground-state electronic orbitals as the input. It preserves all the symmetries of the original high accuracy model. The added computational cost is less than that of the reference HF or DFT and scales linearly with respect to system size. We examine the performance of DeePHF on organic molecular systems using publicly available datasets and obtain the state-of-art performance, particularly on large datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI