Faster-YOLO: An accurate and faster object detection method

计算机科学 目标检测 人工智能 卷积神经网络 模式识别(心理学) 帕斯卡(单位) 自编码 深度学习 最大值和最小值 极限学习机 加速 核(代数) 计算机视觉 人工神经网络 数学 组合数学 程序设计语言 数学分析 操作系统
作者
Yunhua Yin,Huifang Li,Wei Fu
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:102: 102756-102756 被引量:96
标识
DOI:10.1016/j.dsp.2020.102756
摘要

In the computer vision, object detection has always been considered one of the most challenging issues because it requires classifying and locating objects in the same scene. Many object detection approaches were recently proposed based on deep convolutional neural networks (DCNNs), which have been demonstrated to achieve outstanding object detection performance compared to other approaches. However, the supervised training of DCNNs mostly uses gradient-based optimization criteria, in which all parameters of hidden layers require multiple iterations, and often faces some problems such as local minima, intensive human intervention, time-consuming, etc. In this paper, we propose a new method called Faster-YOLO, which is able to perform real-time object detection. The deep random kernel convolutional extreme learning machine (DRKCELM) and double hidden layer extreme learning machine auto-encoder (DLELM-AE) joint network is used as a feature extractor for object detection, which integrating the advantages of ELM-LRF and ELM-AE. It takes the raw images directly as input and thus is suitable for the different datasets. In addition, most connection weights are randomly generated, so there are few parameter settings and training speed is faster. The experiment results on Pascal VOC dataset show that Faster-YOLO improves the detection accuracy effectively by 1.1 percentage points compared to the original YOLOv2, and an average 2X speedup compared to YOLOv3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助yiy37采纳,获得10
1秒前
1秒前
2秒前
2秒前
完美世界应助豆包_P12345采纳,获得50
2秒前
2秒前
mojibunny完成签到,获得积分10
2秒前
张益权完成签到,获得积分10
3秒前
4秒前
高高千万完成签到,获得积分10
4秒前
4秒前
科研通AI6应助llh采纳,获得10
4秒前
5秒前
老老实实好好活着完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
逢春关注了科研通微信公众号
6秒前
6秒前
HQ发布了新的文献求助10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
专注白昼应助科研通管家采纳,获得20
6秒前
酷波er应助顺利的奇异果采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
叶泽完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得50
6秒前
6秒前
meteor应助科研通管家采纳,获得20
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得20
7秒前
量子星尘发布了新的文献求助10
7秒前
无为完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得20
7秒前
天天快乐应助科研通管家采纳,获得50
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728