Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留白留白完成签到,获得积分10
刚刚
orixero应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
Claudia黄完成签到,获得积分20
2秒前
竹峪卿应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
啦啦啦发布了新的文献求助10
3秒前
5秒前
天天快乐应助mf采纳,获得10
5秒前
5秒前
5秒前
大母大完成签到,获得积分10
5秒前
wanci应助苗条书桃采纳,获得30
6秒前
科研通AI2S应助帆帆帆采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
星辰大海应助紧张的毛衣采纳,获得10
11秒前
碧萱发布了新的文献求助10
12秒前
CherishLars完成签到,获得积分10
14秒前
宋子涵完成签到 ,获得积分10
15秒前
renmeitao66_3完成签到,获得积分10
15秒前
衡山后学祝晓钰完成签到,获得积分10
17秒前
悠然地八音完成签到,获得积分10
17秒前
zzz完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655