亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aishaniya发布了新的文献求助10
刚刚
可爱的函函应助小正采纳,获得10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
默mo完成签到 ,获得积分10
29秒前
Krim完成签到 ,获得积分0
31秒前
33秒前
36秒前
lindsay发布了新的文献求助10
37秒前
开放素完成签到 ,获得积分0
46秒前
53秒前
今后应助doudou采纳,获得10
59秒前
1分钟前
lindsay完成签到,获得积分10
1分钟前
可爱的函函应助小正采纳,获得10
1分钟前
星辰大海应助abc采纳,获得10
1分钟前
辉辉完成签到,获得积分10
1分钟前
诚心幻莲发布了新的文献求助10
1分钟前
包破茧完成签到,获得积分0
1分钟前
1分钟前
2分钟前
Criminology34举报迷路白枫求助涉嫌违规
2分钟前
慕青应助keke采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
MchemG应助hu采纳,获得20
2分钟前
keke发布了新的文献求助10
2分钟前
2分钟前
曾经白亦完成签到 ,获得积分10
2分钟前
doudou发布了新的文献求助10
2分钟前
2分钟前
doudou完成签到,获得积分10
2分钟前
abc发布了新的文献求助10
2分钟前
2分钟前
984295567完成签到,获得积分10
2分钟前
CipherSage应助keke采纳,获得10
3分钟前
genomed应助drsherlock采纳,获得10
3分钟前
韩寒完成签到 ,获得积分10
3分钟前
JEK发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606564
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866772
捐赠科研通 4707326
什么是DOI,文献DOI怎么找? 2542867
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276