Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助ZAP采纳,获得10
刚刚
nczpf2010完成签到,获得积分10
1秒前
迪卢克发布了新的文献求助10
1秒前
2秒前
2秒前
林一完成签到,获得积分10
2秒前
3秒前
3秒前
zxlllll发布了新的文献求助10
3秒前
老子就是杀猪的完成签到,获得积分10
3秒前
心灵美的怜蕾完成签到,获得积分10
3秒前
xhy发布了新的文献求助10
4秒前
机灵的彤完成签到,获得积分10
4秒前
一一完成签到,获得积分10
5秒前
5秒前
5秒前
完美世界应助clyhg采纳,获得10
6秒前
科研通AI6应助苦涩油麦菜采纳,获得10
6秒前
木枝发布了新的文献求助10
6秒前
6秒前
7秒前
浮游应助wang采纳,获得10
7秒前
善良的灵羊完成签到 ,获得积分10
7秒前
Zx_1993应助徐per爱豆采纳,获得20
8秒前
材料化学左亚坤完成签到,获得积分10
8秒前
8秒前
alick完成签到,获得积分10
8秒前
空中风也完成签到 ,获得积分10
8秒前
9秒前
9秒前
w_完成签到,获得积分10
9秒前
都找到了完成签到,获得积分10
9秒前
9秒前
Luyao完成签到,获得积分10
9秒前
蓝胖子完成签到,获得积分20
10秒前
善学以致用应助Gjyy采纳,获得10
10秒前
领导范儿应助朽木采纳,获得10
10秒前
wrnd发布了新的文献求助10
11秒前
ZAP完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959983
求助须知:如何正确求助?哪些是违规求助? 4220536
关于积分的说明 13143223
捐赠科研通 4004417
什么是DOI,文献DOI怎么找? 2191353
邀请新用户注册赠送积分活动 1205645
关于科研通互助平台的介绍 1116915