Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
153266916完成签到 ,获得积分10
1秒前
荣幸完成签到 ,获得积分10
1秒前
dahong完成签到 ,获得积分10
4秒前
rsdggsrser完成签到 ,获得积分10
4秒前
MLJ完成签到 ,获得积分10
5秒前
CHANG完成签到 ,获得积分10
6秒前
伊笙完成签到 ,获得积分0
7秒前
butaishao完成签到,获得积分10
12秒前
森山完成签到,获得积分10
12秒前
yingtiao完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
危机的秋双完成签到 ,获得积分10
19秒前
24秒前
左婷完成签到 ,获得积分10
26秒前
WangJL完成签到 ,获得积分10
32秒前
丘比特应助夏夏采纳,获得10
37秒前
量子星尘发布了新的文献求助10
38秒前
xiaofan完成签到,获得积分10
39秒前
幽默滑板完成签到 ,获得积分10
45秒前
shilly完成签到 ,获得积分10
49秒前
无幻完成签到 ,获得积分10
58秒前
59秒前
cdercder完成签到,获得积分0
1分钟前
鲤鱼听荷完成签到 ,获得积分10
1分钟前
1分钟前
sky发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
淡然的剑通完成签到 ,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
安安完成签到,获得积分10
1分钟前
庚朝年完成签到 ,获得积分10
1分钟前
南宫士晋完成签到 ,获得积分10
1分钟前
1分钟前
Zhao完成签到 ,获得积分10
1分钟前
1分钟前
奋斗诗云完成签到 ,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615564
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575