Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
格拉希尔完成签到,获得积分10
刚刚
yeahokk发布了新的文献求助10
1秒前
慕青应助yy采纳,获得10
1秒前
yy发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
jinke发布了新的文献求助10
1秒前
2秒前
L山间葱完成签到,获得积分20
2秒前
shan发布了新的文献求助10
2秒前
2秒前
2秒前
555发布了新的文献求助10
3秒前
浪子应助专注的书白采纳,获得10
3秒前
3秒前
完美世界应助盛夏如花采纳,获得10
3秒前
4秒前
江一山完成签到,获得积分20
4秒前
4秒前
Dyson Hou完成签到,获得积分10
5秒前
认真初之完成签到,获得积分10
5秒前
5秒前
夏沫完成签到,获得积分10
5秒前
崔楠发布了新的文献求助10
5秒前
Owen应助JJ采纳,获得10
5秒前
小冉发布了新的文献求助10
5秒前
哈皮完成签到,获得积分10
6秒前
6秒前
6秒前
所所应助shan采纳,获得10
6秒前
懒人发布了新的文献求助20
6秒前
你好发布了新的文献求助10
6秒前
6秒前
杜禹锋发布了新的文献求助10
7秒前
7秒前
7秒前
RLL完成签到,获得积分10
8秒前
8秒前
善学以致用应助seven采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836