Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴英完成签到,获得积分10
刚刚
健壮的紫夏完成签到,获得积分10
刚刚
烟花应助罗威椒采纳,获得10
1秒前
小北发布了新的文献求助10
2秒前
3秒前
5秒前
所所应助研友_n2yJbL采纳,获得10
6秒前
十九发布了新的文献求助10
6秒前
所所应助端庄的蜡烛采纳,获得10
7秒前
一个发布了新的文献求助10
8秒前
孤灯剑客完成签到,获得积分10
8秒前
夏侯觅风发布了新的文献求助10
9秒前
谦让的牛排完成签到 ,获得积分10
13秒前
14秒前
15秒前
细心帽子完成签到 ,获得积分10
16秒前
16秒前
16秒前
科研通AI6应助一个采纳,获得10
18秒前
科研通AI2S应助月儿采纳,获得10
19秒前
充电宝应助月儿采纳,获得10
19秒前
乐乐应助月儿采纳,获得10
19秒前
BowieHuang应助月儿采纳,获得10
19秒前
隐形曼青应助月儿采纳,获得30
19秒前
19秒前
李爱国应助月儿采纳,获得30
19秒前
小二郎应助月儿采纳,获得30
19秒前
Hello应助月儿采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
21秒前
---发布了新的文献求助10
21秒前
GH完成签到,获得积分10
22秒前
彭于晏应助小李采纳,获得10
22秒前
23秒前
传奇3应助小巧酸奶采纳,获得10
24秒前
25秒前
那都通完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312