Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)

支持向量机 地下水 卷积神经网络 接收机工作特性 人工神经网络 计算机科学 地形 人工智能 水文学(农业) 数据挖掘 机器学习 地质学 地图学 地理 岩土工程
作者
Mahdi Panahi,Nitheshnirmal Sãdhasivam,Hamid Reza Pourghasemi,Fatemeh Rezaie,Saro Lee
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:588: 125033-125033 被引量:294
标识
DOI:10.1016/j.jhydrol.2020.125033
摘要

Freshwater shortages have become much more common globally in recent years. Water resources that are naturally available beneath the surface are capable of reversing this condition. Spatial modeling of groundwater distribution is an important undertaking that would aid in subsequent conservation and management of groundwater resources. In this study, groundwater potential maps were developed using a machine learning algorithm (MLA) and a deep learning algorithm (DLA), specifically the support vector regression (SVR) and convolution neural network (CNN) functions, respectively. Initially, 140 groundwater datasets were created through an extensive survey and then arbitrarily divided into groups of 100 (70%) and 40 (30%) datasets for model calibration and testing, respectively. Next, 15 groundwater conditioning factors (GCFs), including catchment area (CA), convergence index (CI), convexity (Co), diurnal anisotropic heating (DH), flow path (FP), slope angle (SA), slope height (SH), topographic position index (TPI), terrain ruggedness index (TRI), slope length (LS) factor, mass balance index (MBI), texture (TX), valley depth (VD), land cover (LC), and geology (GG) were produced and applied for model training. Finally, the calibrated model was validated using both training and testing data, and the independent measure of the receiver operating characteristic-area under the curve (ROC-AUC). For validation using training data, the AUC values of CNN and SVR were 0.844 and 0.75, whereas those of CNN and SVR during validation with the testing data were 0.843 and 0.75. Therefore, CNN has better predictive ability than SVR. The findings of this study will help policymakers develop better strategies for conservation and management of groundwater resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chouchou发布了新的文献求助10
刚刚
1秒前
y9gyn_37完成签到,获得积分10
1秒前
2秒前
桃井尤川完成签到,获得积分10
2秒前
Ava应助Zora采纳,获得10
2秒前
lili完成签到 ,获得积分10
2秒前
zorro3574发布了新的文献求助10
3秒前
海丽完成签到 ,获得积分10
3秒前
三三四完成签到,获得积分10
4秒前
韭菜盒子完成签到,获得积分10
4秒前
4秒前
hao完成签到,获得积分0
5秒前
灵巧的飞雪完成签到 ,获得积分10
6秒前
一二完成签到,获得积分10
6秒前
谭慧娉完成签到 ,获得积分10
7秒前
8秒前
璐璐完成签到 ,获得积分10
8秒前
俊杰完成签到,获得积分10
8秒前
魁梧的仰完成签到,获得积分20
9秒前
9秒前
10秒前
肱二头肌完成签到,获得积分10
10秒前
廖喜林完成签到,获得积分10
10秒前
赘婿应助逍遥子采纳,获得10
11秒前
852应助逍遥子采纳,获得10
11秒前
11秒前
ChiariRay完成签到,获得积分10
11秒前
长柏完成签到 ,获得积分10
11秒前
酷波er应助ysta采纳,获得10
11秒前
Gloria的保镖完成签到 ,获得积分10
11秒前
12秒前
魁梧的仰发布了新的文献求助10
13秒前
道爷发布了新的文献求助10
13秒前
应急食品完成签到,获得积分10
13秒前
14秒前
关耳完成签到,获得积分10
14秒前
14秒前
14秒前
Channing_Ho完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685844
关于积分的说明 14840076
捐赠科研通 4675267
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471141