亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence and machine learning for Alzheimer’s disease: let’s not forget about the retina

视网膜 医学 疾病 人工智能 阿尔茨海默病 神经科学 眼科 验光服务 认知科学 病理 计算机科学 心理学
作者
Wei Yan Ng,Carol Y. Cheung,Dan Miléa,Daniel Shu Wei Ting
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:105 (5): 593-594 被引量:10
标识
DOI:10.1136/bjophthalmol-2020-318407
摘要

As the world population ages, it is estimated that the population worldwide above the age of 65 years old will increase from 420 million in 2000 to almost 1 billion by 2030.1 Dementia, with Alzheimer’s disease (AD) as the leading cause, is expected to rise in tandem. AD accounts for 60%–80% of all dementia cases,2 with an estimated 5–7 million new cases diagnosed each year.3 Despite intensive research, the diagnosis of AD is currently made through a combination of clinical assessment, neuroimaging and detection of biomarkers from positron emission tomography or cerebrospinal fluid examination,4 with patients facing issues including high costs, invasiveness of the procedures.5 Hence, alternative identification of AD without the use of costly or invasive tests remains a challenge that is difficult to surmount. To date, the healthcare has experienced a significant shift towards early accurate detection as well as early prevention. This importance is highlighted by the screening and surveillance of prevalent diseases such as diabetic retinopathy,6 breast cancer7 and dementia.8 While some of these programmes have been very successful in significantly reducing morbidity and mortality, significant amount of manpower, time and training is required for their successful execution.9 10 This has lent greater weight to the adoption of healthcare technology in order to optimise the accuracy and efficiency of such programmes. Artificial intelligence (AI), through the combination of digitised big data and computational power, has emerged at the forefront of healthcare.11 It appears to be well-suited to address the needs of the healthcare system: fast and accurate predictive, diagnostic and possibly therapeutic algorithms. Machine …
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
小巫发布了新的文献求助10
10秒前
Jasper应助cheesy采纳,获得10
16秒前
去去去去发布了新的文献求助10
17秒前
40秒前
cheesy发布了新的文献求助10
43秒前
56秒前
FMHChan完成签到,获得积分10
1分钟前
风信子deon01完成签到,获得积分10
1分钟前
1分钟前
于洋完成签到 ,获得积分10
1分钟前
ZhJF完成签到 ,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
半岛岛发布了新的文献求助10
2分钟前
科研通AI2S应助athena采纳,获得10
2分钟前
斯文败类应助去去去去采纳,获得10
3分钟前
小叶完成签到 ,获得积分10
3分钟前
sallltyyy完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分10
3分钟前
半岛岛完成签到,获得积分10
3分钟前
3分钟前
3分钟前
去去去去发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lanxinyue应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
Amen完成签到,获得积分10
4分钟前
4分钟前
4分钟前
染东完成签到,获得积分10
4分钟前
4分钟前
小巫发布了新的文献求助10
4分钟前
染东发布了新的文献求助10
4分钟前
梓歆完成签到 ,获得积分10
4分钟前
自信的傲晴完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助安输采纳,获得10
5分钟前
Jack80发布了新的文献求助800
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790458
关于积分的说明 7795318
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159