Quantifying the spatial homogeneity of urban road networks via graph neural networks

同质性(统计学) 地理 经济地理学 社会经济地位 空间生态学 城市规划 人口 计算机科学 区域科学 运输工程 机器学习 工程类 土木工程 生态学 人口学 社会学 生物
作者
Jiawei Xue,Nan Jiang,Senwei Liang,Qiyuan Pang,Takahiro Yabe,Satish V. Ukkusuri,Jianzhu Ma
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (3): 246-257 被引量:48
标识
DOI:10.1038/s42256-022-00462-y
摘要

Quantifying the topological similarities of different parts of urban road networks enables us to understand urban growth patterns. Although conventional statistics provide useful information about the characteristics of either a single node’s direct neighbours or the entire network, such metrics fail to measure the similarities of subnetworks or capture local, indirect neighbourhood relationships. Here we propose a graph-based machine learning method to quantify the spatial homogeneity of subnetworks. We apply the method to 11,790 urban road networks across 30 cities worldwide to measure the spatial homogeneity of road networks within each city and across different cities. We find that intracity spatial homogeneity is highly associated with socioeconomic status indicators such as gross domestic product and population growth. Moreover, intercity spatial homogeneity values obtained by transferring the model across different cities reveal the intercity similarity of urban network structures originating in Europe, passed on to cities in the United States and Asia. The socioeconomic development and intercity similarity revealed using our method can be leveraged to understand and transfer insights between cities. It also enables us to address urban policy challenges including network planning in rapidly urbanizing areas and regional inequality. The spatial homogeneity of urban road networks can be quantified in a fine-grained manner with graph neural networks. This method is studied across 11,790 inner-city road networks around the world and can be used to study socioeconomic development and help with urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rachel完成签到,获得积分20
1秒前
SHIROKO完成签到,获得积分10
1秒前
nns完成签到,获得积分10
1秒前
派大星发布了新的文献求助10
2秒前
兜兜窦完成签到,获得积分10
2秒前
seven发布了新的文献求助10
2秒前
danny发布了新的文献求助10
3秒前
3秒前
深情安青应助贪玩的听荷采纳,获得10
4秒前
文艺的又亦完成签到,获得积分10
4秒前
黄黄完成签到,获得积分0
4秒前
顺利紫山发布了新的文献求助10
5秒前
西红柿完成签到,获得积分0
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
帕尼灬尼发布了新的文献求助10
5秒前
大力老木发布了新的文献求助10
5秒前
6秒前
6秒前
lkjh驳回了佳佳应助
6秒前
7秒前
7秒前
愉快绿蓉关注了科研通微信公众号
7秒前
7秒前
7秒前
8秒前
8秒前
ZBW完成签到,获得积分20
8秒前
飞飞完成签到,获得积分10
8秒前
sleep完成签到,获得积分10
9秒前
lone623发布了新的文献求助10
9秒前
晒黑的雪碧完成签到,获得积分10
9秒前
zz发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635