Quantifying the spatial homogeneity of urban road networks via graph neural networks

同质性(统计学) 地理 经济地理学 社会经济地位 空间生态学 城市规划 人口 计算机科学 区域科学 运输工程 机器学习 工程类 土木工程 生态学 社会学 生物 人口学
作者
Jiawei Xue,Nan Jiang,Senwei Liang,Qiyuan Pang,Takahiro Yabe,Satish V. Ukkusuri,Jianzhu Ma
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 246-257 被引量:48
标识
DOI:10.1038/s42256-022-00462-y
摘要

Quantifying the topological similarities of different parts of urban road networks enables us to understand urban growth patterns. Although conventional statistics provide useful information about the characteristics of either a single node’s direct neighbours or the entire network, such metrics fail to measure the similarities of subnetworks or capture local, indirect neighbourhood relationships. Here we propose a graph-based machine learning method to quantify the spatial homogeneity of subnetworks. We apply the method to 11,790 urban road networks across 30 cities worldwide to measure the spatial homogeneity of road networks within each city and across different cities. We find that intracity spatial homogeneity is highly associated with socioeconomic status indicators such as gross domestic product and population growth. Moreover, intercity spatial homogeneity values obtained by transferring the model across different cities reveal the intercity similarity of urban network structures originating in Europe, passed on to cities in the United States and Asia. The socioeconomic development and intercity similarity revealed using our method can be leveraged to understand and transfer insights between cities. It also enables us to address urban policy challenges including network planning in rapidly urbanizing areas and regional inequality. The spatial homogeneity of urban road networks can be quantified in a fine-grained manner with graph neural networks. This method is studied across 11,790 inner-city road networks around the world and can be used to study socioeconomic development and help with urban planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈pc完成签到,获得积分10
刚刚
maruko完成签到,获得积分10
刚刚
吃狗粮的猫完成签到 ,获得积分10
刚刚
DUAN发布了新的文献求助10
刚刚
医学生Mavis完成签到,获得积分10
刚刚
1秒前
kchrisuzad完成签到,获得积分10
1秒前
1秒前
愿如愿发布了新的文献求助10
1秒前
1秒前
传奇3应助hyy采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
LLHHZZ完成签到,获得积分10
3秒前
穿西装的小卡完成签到 ,获得积分10
3秒前
徐徐徐徐徐徐徐完成签到,获得积分20
3秒前
QJQ完成签到 ,获得积分10
3秒前
七木完成签到,获得积分10
4秒前
icey完成签到,获得积分10
4秒前
4秒前
4秒前
完美世界应助科研笨猪采纳,获得10
4秒前
迷人书蝶发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
6秒前
6秒前
归尘发布了新的文献求助10
7秒前
果称发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助30
7秒前
希望天下0贩的0应助zxd采纳,获得10
7秒前
Dr_J发布了新的文献求助10
8秒前
FF发布了新的文献求助10
8秒前
icey发布了新的文献求助10
8秒前
小二郎应助chruse采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578