Towards the overcoming of anticancer drug resistance mediated by p53 mutations

抗药性 癌症 紫杉醇 顺铂 癌症研究 生物 癌细胞 药物发现 替莫唑胺 药品 药理学 生物信息学 遗传学 化疗 胶质母细胞瘤
作者
Xin Cao,Jiayun Hou,Quanlin An,Yehuda G. Assaraf,Xiangdong Wang
出处
期刊:Drug Resistance Updates [Elsevier]
卷期号:49: 100671-100671 被引量:136
标识
DOI:10.1016/j.drup.2019.100671
摘要

Cancer continues to be a leading threat to human health and life. Resistance to anti-cancer drugs is a major impediment towards efficacious cancer treatment. p53 mutations play an important role in cancer cell resistance to chemotherapeutic drugs. The frequency of p53-based chemoresistance is highly associated with the chemical properties of the anticancer drug, the cellular drug target, the biological function being blocked by the chemotherapeutic agent, the genomic instability and alterations of the tumor, as well as its differentiation state. The p53-based molecular mechanisms of anticancer drug resistance are insufficiently understood. With a clear focus on the role of p53 mutations in anticancer drug resistance, the present article reviews the biological structure and function of p53, its regulatory mechanisms, as well as the molecular mechanisms underlying p53 mutation-dependent chemoresistance and possible modalities to surmount this drug resistance. We specifically discuss the roles of p53 in the development of chemoresistance to classical cytotoxic agents including for example cisplatin, doxorubicin, 5-fluorouracil, temozolomide, and paclitaxel. It is expected that the clinical manifestation of drug resistance can be integrated with data obtained from molecular multi-omics analyses addressing the alterations provoked by p53-driven resistance to discover the altered networks in these drug resistant tumors. Thus, novel drugs targeting mutant p53 or mutant p53-based dysregulated pathways, could be developed that may overcome well-defined mutant p53-mediated chemoresistance. Thus, an in-depth understanding of the p53-driven resistance modalities could facilitate the development of novel targeted antitumor drugs and strategies aimed at enhancing the efficacy of current cancer therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小小发布了新的文献求助10
1秒前
weishen留下了新的社区评论
1秒前
2秒前
long0809发布了新的文献求助10
2秒前
4秒前
momo完成签到,获得积分10
4秒前
hsgfiw完成签到,获得积分10
5秒前
7秒前
momo发布了新的文献求助10
7秒前
Rocc完成签到,获得积分10
8秒前
9秒前
斯文败类应助士兵许三多采纳,获得10
9秒前
Zzz完成签到 ,获得积分10
9秒前
XylonYu完成签到,获得积分10
11秒前
Xuezhuoxin发布了新的文献求助10
12秒前
所所应助傲娇文博采纳,获得10
13秒前
zxcvbnm完成签到,获得积分10
14秒前
14秒前
16秒前
wang1234发布了新的文献求助10
16秒前
Yao丶发布了新的文献求助10
17秒前
大水发布了新的文献求助10
18秒前
19秒前
19秒前
zanwu完成签到,获得积分10
21秒前
21秒前
传奇3应助菩萨保佑采纳,获得15
21秒前
22秒前
CodeCraft应助zhBian采纳,获得10
22秒前
25秒前
薛一刀发布了新的文献求助30
25秒前
傲娇文博发布了新的文献求助10
25秒前
祁依欧欧完成签到,获得积分10
26秒前
26秒前
123木头人完成签到,获得积分10
26秒前
陈忠正发布了新的文献求助10
27秒前
所所应助古月采纳,获得10
28秒前
X-星完成签到 ,获得积分10
30秒前
李健应助呆萌的迪克采纳,获得10
30秒前
HS完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538560
求助须知:如何正确求助?哪些是违规求助? 3116348
关于积分的说明 9324702
捐赠科研通 2814124
什么是DOI,文献DOI怎么找? 1546485
邀请新用户注册赠送积分活动 720574
科研通“疑难数据库(出版商)”最低求助积分说明 712083