Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol

双金属片 吸附 材料科学 催化作用 合金 微观结构 吉布斯自由能 原子半径 化学工程 甲醇 Atom(片上系统) 选择性 纳米技术 金属 热力学 物理化学 冶金 计算机科学 化学 有机化学 物理 工程类 嵌入式系统
作者
Diptendu Roy,Shyama Charan Mandal,Biswarup Pathak
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56151-56163 被引量:69
标识
DOI:10.1021/acsami.1c16696
摘要

The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO2 to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO2 reduction reaction toward CH3OH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *H2CO, and *H3CO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ndDGVn完成签到 ,获得积分10
7秒前
43呀应助科研通管家采纳,获得20
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
轻松的鸿煊完成签到 ,获得积分10
8秒前
小叶完成签到,获得积分20
11秒前
春夏秋冬完成签到,获得积分10
12秒前
孤独黑猫完成签到 ,获得积分10
13秒前
呀呀完成签到 ,获得积分10
16秒前
aaa0001984完成签到,获得积分0
17秒前
ken131完成签到 ,获得积分10
17秒前
麟钰完成签到,获得积分10
17秒前
白日焰火完成签到 ,获得积分10
22秒前
skittles发布了新的文献求助10
23秒前
仔仔完成签到 ,获得积分10
24秒前
舒洛完成签到,获得积分10
26秒前
liuyq0501完成签到,获得积分10
28秒前
QY完成签到 ,获得积分10
29秒前
活力数据线完成签到,获得积分10
31秒前
xmy完成签到,获得积分10
31秒前
seeeee完成签到 ,获得积分10
33秒前
35秒前
kaka完成签到,获得积分10
35秒前
科研小笨猪完成签到,获得积分10
35秒前
Summer_Xia完成签到,获得积分10
36秒前
pp发布了新的文献求助10
40秒前
温暖的鸿完成签到 ,获得积分10
40秒前
Anjianfubai完成签到,获得积分10
41秒前
夜话风陵杜完成签到 ,获得积分0
41秒前
orixero应助pp采纳,获得10
48秒前
chem完成签到,获得积分10
50秒前
啊唔完成签到 ,获得积分10
53秒前
jeronimo完成签到,获得积分10
58秒前
Zz完成签到 ,获得积分10
59秒前
1分钟前
skittles完成签到,获得积分10
1分钟前
1分钟前
Zhai完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788032
关于积分的说明 7784385
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625552
版权声明 601010