Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol

双金属片 吸附 材料科学 催化作用 合金 微观结构 吉布斯自由能 原子半径 化学工程 甲醇 Atom(片上系统) 纳米技术 金属 热力学 物理化学 冶金 计算机科学 化学 有机化学 物理 工程类 嵌入式系统
作者
Diptendu Roy,Shyama Charan Mandal,Biswarup Pathak
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56151-56163 被引量:97
标识
DOI:10.1021/acsami.1c16696
摘要

The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO2 to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO2 reduction reaction toward CH3OH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *H2CO, and *H3CO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
romeo发布了新的文献求助10
刚刚
刚刚
刚刚
abb先生发布了新的文献求助10
1秒前
Owen应助王王采纳,获得10
1秒前
2秒前
药007完成签到,获得积分10
2秒前
Kai发布了新的文献求助10
2秒前
3秒前
1234发布了新的文献求助10
4秒前
彩色的紫南完成签到,获得积分10
4秒前
化学发布了新的文献求助10
4秒前
5秒前
妮妮完成签到 ,获得积分10
6秒前
6秒前
淡淡大山发布了新的文献求助10
7秒前
romeo发布了新的文献求助10
8秒前
8秒前
欢喜雪瑶发布了新的文献求助10
8秒前
8秒前
9秒前
benbengouj发布了新的文献求助10
9秒前
三月兔发布了新的文献求助10
9秒前
9秒前
lalala发布了新的文献求助10
10秒前
Zoe完成签到,获得积分10
12秒前
1234完成签到,获得积分10
12秒前
12秒前
Live发布了新的文献求助10
12秒前
romeo发布了新的文献求助10
13秒前
Bean完成签到,获得积分10
13秒前
13秒前
高玉峰发布了新的文献求助10
13秒前
13秒前
15秒前
adhere发布了新的文献求助10
15秒前
NexusExplorer应助三月兔采纳,获得10
16秒前
淡淡大山完成签到,获得积分20
16秒前
斯文败类应助缓慢的煎蛋采纳,获得10
16秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774