亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol

双金属片 吸附 材料科学 催化作用 合金 微观结构 吉布斯自由能 原子半径 化学工程 甲醇 Atom(片上系统) 纳米技术 金属 热力学 物理化学 冶金 计算机科学 化学 有机化学 物理 工程类 嵌入式系统
作者
Diptendu Roy,Shyama Charan Mandal,Biswarup Pathak
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56151-56163 被引量:84
标识
DOI:10.1021/acsami.1c16696
摘要

The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO2 to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO2 reduction reaction toward CH3OH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *H2CO, and *H3CO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Criminology34应助科研通管家采纳,获得10
10秒前
nickel完成签到,获得积分10
16秒前
16秒前
jokerhoney完成签到,获得积分10
18秒前
zsmj23完成签到 ,获得积分0
24秒前
tingalan完成签到,获得积分0
37秒前
xlacy完成签到,获得积分10
48秒前
1分钟前
小马甲应助xlacy采纳,获得10
1分钟前
Akashi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
木可发布了新的文献求助10
2分钟前
李健的小迷弟应助木可采纳,获得10
2分钟前
木耳完成签到,获得积分10
5分钟前
5分钟前
桐桐应助鹏笑采纳,获得10
5分钟前
5分钟前
Jay发布了新的文献求助10
5分钟前
Criminology34应助科研通管家采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
Jay完成签到,获得积分10
6分钟前
6分钟前
ding应助感性的靖仇采纳,获得10
7分钟前
善学以致用应助Nikki采纳,获得10
8分钟前
8分钟前
8分钟前
Criminology34应助科研通管家采纳,获得10
8分钟前
感性的靖仇完成签到,获得积分20
8分钟前
8分钟前
Nikki发布了新的文献求助10
8分钟前
科研通AI6应助Nikki采纳,获得10
8分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357215
求助须知:如何正确求助?哪些是违规求助? 4488685
关于积分的说明 13972467
捐赠科研通 4389901
什么是DOI,文献DOI怎么找? 2411745
邀请新用户注册赠送积分活动 1404334
关于科研通互助平台的介绍 1378501