Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol

双金属片 吸附 材料科学 催化作用 合金 微观结构 吉布斯自由能 原子半径 化学工程 甲醇 Atom(片上系统) 纳米技术 金属 热力学 物理化学 冶金 计算机科学 化学 有机化学 物理 工程类 嵌入式系统
作者
Diptendu Roy,Shyama Charan Mandal,Biswarup Pathak
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56151-56163 被引量:74
标识
DOI:10.1021/acsami.1c16696
摘要

The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO2 to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO2 reduction reaction toward CH3OH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *H2CO, and *H3CO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到 ,获得积分10
1秒前
华仔应助热心小松鼠采纳,获得10
2秒前
2秒前
852应助热心小松鼠采纳,获得10
2秒前
小二郎应助热心小松鼠采纳,获得10
2秒前
NexusExplorer应助热心小松鼠采纳,获得10
2秒前
FashionBoy应助热心小松鼠采纳,获得10
2秒前
科目三应助热心小松鼠采纳,获得10
2秒前
完美世界应助热心小松鼠采纳,获得10
2秒前
上官若男应助热心小松鼠采纳,获得10
2秒前
bkagyin应助热心小松鼠采纳,获得10
2秒前
fuje发布了新的文献求助30
2秒前
111发布了新的文献求助10
3秒前
科研通AI5应助Chambray采纳,获得10
3秒前
Lucas应助cyhhhh采纳,获得10
4秒前
ZBY0216完成签到,获得积分10
4秒前
左左完成签到,获得积分10
5秒前
cwn完成签到 ,获得积分10
6秒前
gy关闭了gy文献求助
6秒前
7秒前
111完成签到,获得积分20
7秒前
田様应助hey采纳,获得10
9秒前
11秒前
11秒前
Hello应助默默安双采纳,获得10
12秒前
科研鸟发布了新的文献求助10
12秒前
小蘑菇应助刘刘采纳,获得10
13秒前
孙大坑完成签到,获得积分10
13秒前
哈利波特发布了新的文献求助10
13秒前
yuanfangyi0306给yuanfangyi0306的求助进行了留言
13秒前
快乐曼荷完成签到,获得积分10
13秒前
14秒前
彩色曼彤完成签到,获得积分10
14秒前
14秒前
心心完成签到,获得积分10
15秒前
苏碧萱完成签到,获得积分10
16秒前
16秒前
16秒前
李健的小迷弟应助Kvolu29采纳,获得10
17秒前
苏碧萱发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421