Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol

双金属片 吸附 材料科学 催化作用 合金 微观结构 吉布斯自由能 原子半径 化学工程 甲醇 Atom(片上系统) 纳米技术 金属 热力学 物理化学 冶金 计算机科学 化学 有机化学 物理 工程类 嵌入式系统
作者
Diptendu Roy,Shyama Charan Mandal,Biswarup Pathak
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56151-56163 被引量:84
标识
DOI:10.1021/acsami.1c16696
摘要

The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO2 to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO2 reduction reaction toward CH3OH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *H2CO, and *H3CO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stella应助Wangyingjie5采纳,获得10
刚刚
dddddd完成签到,获得积分10
刚刚
xiaosheng发布了新的文献求助10
1秒前
zhang完成签到 ,获得积分10
2秒前
IIIris完成签到,获得积分10
2秒前
Lucas应助无语的千儿采纳,获得10
2秒前
英俊的铭应助zjiayouz采纳,获得10
3秒前
3秒前
Lucas应助山楂罐头冰冰凉采纳,获得10
4秒前
无花果应助辐睿采纳,获得10
4秒前
4秒前
6秒前
6秒前
6秒前
王伯文完成签到,获得积分20
6秒前
taybour完成签到,获得积分10
7秒前
7秒前
辣辣应助啊呜采纳,获得10
7秒前
7秒前
天空完成签到,获得积分20
8秒前
8秒前
xjyyy完成签到,获得积分10
8秒前
sai完成签到,获得积分10
8秒前
限量发布了新的文献求助10
9秒前
9秒前
芷云发布了新的文献求助10
9秒前
小杨完成签到,获得积分10
9秒前
zwhy完成签到,获得积分10
10秒前
10秒前
张杰发布了新的文献求助10
11秒前
pioneers完成签到,获得积分10
11秒前
马小跳发布了新的文献求助10
12秒前
SciGPT应助kk采纳,获得10
12秒前
李健的小迷弟应助可爱绮采纳,获得10
13秒前
HAL发布了新的文献求助10
13秒前
谨慎青亦发布了新的文献求助10
13秒前
自由元冬发布了新的文献求助10
13秒前
13秒前
贤惠的饼干完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448