亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage

温室气体 阶段(地层学) 环境科学 生命周期评估 多线性映射 全球变暖 环境工程 生产(经济) 土木工程 工程类 气候变化 数学 宏观经济学 生态学 古生物学 经济 纯数学 生物
作者
Yuan Fang,Xiaoqing Lu,Hongyang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:328: 129657-129657 被引量:93
标识
DOI:10.1016/j.jclepro.2021.129657
摘要

Carbon dioxide (CO2) emissions is a major greenhouse gas that causes global warming. Many researchers in the fields of architecture, engineering, and construction try to measured CO2 emissions during a building's lifecycle. However, research on the CO2 emissions during construction stage are less studied than those during other stages because they are considered to be lower than the emissions from the building's materials' production or operational stage. In addition, research has been hindered by a complicated calculation process and a lack of data, and thus few methods are available for forecasting construction-stage carbon emissions, especially at the early design stage. In order to estimate the environmental effects of the emissions from the vast number of construction activities, this study applies a random forest (RF) based predictive method to predict construction-stage carbon emissions. The RF-based model uses data from 38 buildings in the Pearl River Delta region of China for the initial training set to find the relation between construction-stage carbon emissions and design parameters. Compared with the multilinear regression method, the RF-based model has a higher coefficient of determination and lower mean square error. The model developed in this study facilitates the prediction of construction-stage carbon emissions at the early design stage of a building. This opens up novel opportunities to reduce carbon emissions from buildings, which had previously been possible only at the latter stages of a building's life cycle. It will also help policymakers account for the probable distribution and amount of CO2 emissions in a city when multiple construction projects are proceeding simultaneously, so that measures can be implemented to avoid excessive emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
浮游应助Jason采纳,获得10
6秒前
计划完成签到,获得积分10
9秒前
12秒前
14秒前
16秒前
想上985完成签到,获得积分10
16秒前
talent发布了新的文献求助10
20秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
shhoing应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
BowieHuang应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助笑点低的稀采纳,获得10
30秒前
大方元风发布了新的文献求助10
32秒前
34秒前
HCCha完成签到,获得积分10
37秒前
Tingshan发布了新的文献求助10
39秒前
nah完成签到 ,获得积分10
41秒前
喜悦的小土豆完成签到 ,获得积分10
42秒前
璨澄完成签到 ,获得积分0
42秒前
科研大王完成签到,获得积分10
43秒前
46秒前
48秒前
胡江完成签到 ,获得积分10
51秒前
麻薯完成签到,获得积分10
52秒前
科研启动完成签到,获得积分10
52秒前
53秒前
53秒前
zizi完成签到 ,获得积分10
54秒前
7chill完成签到,获得积分10
57秒前
名子劝学完成签到 ,获得积分10
59秒前
云漓完成签到 ,获得积分10
1分钟前
科研通AI6应助talent采纳,获得10
1分钟前
甜兰儿完成签到,获得积分10
1分钟前
酚醛树脂发布了新的文献求助10
1分钟前
1分钟前
皮皮完成签到 ,获得积分20
1分钟前
羽毛发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374