A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage

温室气体 阶段(地层学) 环境科学 生命周期评估 多线性映射 全球变暖 环境工程 生产(经济) 土木工程 工程类 气候变化 数学 宏观经济学 生态学 古生物学 经济 纯数学 生物
作者
Yuan Fang,Xiaoqing Lu,Hongyang Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:328: 129657-129657 被引量:93
标识
DOI:10.1016/j.jclepro.2021.129657
摘要

Carbon dioxide (CO2) emissions is a major greenhouse gas that causes global warming. Many researchers in the fields of architecture, engineering, and construction try to measured CO2 emissions during a building's lifecycle. However, research on the CO2 emissions during construction stage are less studied than those during other stages because they are considered to be lower than the emissions from the building's materials' production or operational stage. In addition, research has been hindered by a complicated calculation process and a lack of data, and thus few methods are available for forecasting construction-stage carbon emissions, especially at the early design stage. In order to estimate the environmental effects of the emissions from the vast number of construction activities, this study applies a random forest (RF) based predictive method to predict construction-stage carbon emissions. The RF-based model uses data from 38 buildings in the Pearl River Delta region of China for the initial training set to find the relation between construction-stage carbon emissions and design parameters. Compared with the multilinear regression method, the RF-based model has a higher coefficient of determination and lower mean square error. The model developed in this study facilitates the prediction of construction-stage carbon emissions at the early design stage of a building. This opens up novel opportunities to reduce carbon emissions from buildings, which had previously been possible only at the latter stages of a building's life cycle. It will also help policymakers account for the probable distribution and amount of CO2 emissions in a city when multiple construction projects are proceeding simultaneously, so that measures can be implemented to avoid excessive emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑完成签到,获得积分10
刚刚
hwl26完成签到,获得积分10
2秒前
3秒前
坦率雪枫完成签到 ,获得积分10
4秒前
梦醒完成签到,获得积分20
5秒前
qqqdewq完成签到,获得积分10
7秒前
john完成签到 ,获得积分10
9秒前
fbwg发布了新的文献求助10
9秒前
LGH完成签到 ,获得积分10
11秒前
chenyimei完成签到,获得积分10
14秒前
2000pluv完成签到 ,获得积分10
15秒前
fbwg完成签到,获得积分10
18秒前
苗苗完成签到 ,获得积分10
18秒前
呆呆完成签到 ,获得积分10
22秒前
了0完成签到 ,获得积分10
27秒前
她的城完成签到,获得积分0
29秒前
ljlwh完成签到 ,获得积分10
30秒前
WULAVIVA完成签到,获得积分10
30秒前
周周完成签到 ,获得积分10
31秒前
XU博士完成签到,获得积分10
33秒前
Hello应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
35秒前
仇敌克星完成签到,获得积分10
35秒前
Skywalk满天星完成签到,获得积分10
38秒前
腻腻完成签到,获得积分10
39秒前
秋风之墩完成签到,获得积分10
41秒前
41秒前
阿波罗完成签到,获得积分0
42秒前
Splaink发布了新的文献求助10
44秒前
oleskarabach发布了新的文献求助10
45秒前
岩松完成签到 ,获得积分10
48秒前
Microbiota完成签到,获得积分10
52秒前
迅速的幻雪完成签到 ,获得积分10
57秒前
lmm6701完成签到,获得积分10
59秒前
PPSlu完成签到,获得积分10
1分钟前
TUTU完成签到 ,获得积分10
1分钟前
研友_VZGVzn完成签到,获得积分10
1分钟前
腻腻发布了新的文献求助10
1分钟前
祁灵枫完成签到,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212175
求助须知:如何正确求助?哪些是违规求助? 4388435
关于积分的说明 13663849
捐赠科研通 4248864
什么是DOI,文献DOI怎么找? 2331208
邀请新用户注册赠送积分活动 1328931
关于科研通互助平台的介绍 1282248