A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage

温室气体 阶段(地层学) 环境科学 生命周期评估 多线性映射 全球变暖 环境工程 生产(经济) 土木工程 工程类 气候变化 数学 宏观经济学 生态学 古生物学 经济 纯数学 生物
作者
Yuan Fang,Xiaoqing Lü,Hongyang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:328: 129657-129657 被引量:23
标识
DOI:10.1016/j.jclepro.2021.129657
摘要

Carbon dioxide (CO2) emissions is a major greenhouse gas that causes global warming. Many researchers in the fields of architecture, engineering, and construction try to measured CO2 emissions during a building's lifecycle. However, research on the CO2 emissions during construction stage are less studied than those during other stages because they are considered to be lower than the emissions from the building's materials' production or operational stage. In addition, research has been hindered by a complicated calculation process and a lack of data, and thus few methods are available for forecasting construction-stage carbon emissions, especially at the early design stage. In order to estimate the environmental effects of the emissions from the vast number of construction activities, this study applies a random forest (RF) based predictive method to predict construction-stage carbon emissions. The RF-based model uses data from 38 buildings in the Pearl River Delta region of China for the initial training set to find the relation between construction-stage carbon emissions and design parameters. Compared with the multilinear regression method, the RF-based model has a higher coefficient of determination and lower mean square error. The model developed in this study facilitates the prediction of construction-stage carbon emissions at the early design stage of a building. This opens up novel opportunities to reduce carbon emissions from buildings, which had previously been possible only at the latter stages of a building's life cycle. It will also help policymakers account for the probable distribution and amount of CO2 emissions in a city when multiple construction projects are proceeding simultaneously, so that measures can be implemented to avoid excessive emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
沐沐发布了新的文献求助10
1秒前
领导范儿应助124cndhaP采纳,获得10
2秒前
chu发布了新的文献求助10
2秒前
2秒前
2秒前
阿离完成签到,获得积分10
3秒前
爆米花应助是含han采纳,获得10
3秒前
3秒前
wang完成签到,获得积分10
4秒前
生动的鹰完成签到,获得积分10
4秒前
4秒前
Ava应助夏荧荧采纳,获得10
5秒前
杰瑞发布了新的文献求助50
5秒前
我有一头小毛驴完成签到,获得积分10
6秒前
吴天啸完成签到,获得积分10
6秒前
宋博凯发布了新的文献求助30
6秒前
zhou发布了新的文献求助10
7秒前
7秒前
陈森发布了新的文献求助10
7秒前
了该完成签到,获得积分10
7秒前
7秒前
畜牧笑笑发布了新的文献求助50
7秒前
66666应助caiyun采纳,获得10
7秒前
HAO发布了新的文献求助10
8秒前
8秒前
大白菜心发布了新的文献求助10
8秒前
生尽证提完成签到,获得积分10
8秒前
8秒前
8秒前
hyhyhyhy发布了新的文献求助10
8秒前
花佩剑发布了新的文献求助10
8秒前
122完成签到,获得积分10
9秒前
七安完成签到 ,获得积分10
9秒前
英俊的铭应助清水采纳,获得10
9秒前
木cheng完成签到,获得积分20
10秒前
微热山丘完成签到,获得积分10
10秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760