亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage

温室气体 阶段(地层学) 环境科学 生命周期评估 多线性映射 全球变暖 环境工程 生产(经济) 土木工程 工程类 气候变化 数学 宏观经济学 生态学 古生物学 经济 纯数学 生物
作者
Yuan Fang,Xiaoqing Lu,Hongyang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:328: 129657-129657 被引量:93
标识
DOI:10.1016/j.jclepro.2021.129657
摘要

Carbon dioxide (CO2) emissions is a major greenhouse gas that causes global warming. Many researchers in the fields of architecture, engineering, and construction try to measured CO2 emissions during a building's lifecycle. However, research on the CO2 emissions during construction stage are less studied than those during other stages because they are considered to be lower than the emissions from the building's materials' production or operational stage. In addition, research has been hindered by a complicated calculation process and a lack of data, and thus few methods are available for forecasting construction-stage carbon emissions, especially at the early design stage. In order to estimate the environmental effects of the emissions from the vast number of construction activities, this study applies a random forest (RF) based predictive method to predict construction-stage carbon emissions. The RF-based model uses data from 38 buildings in the Pearl River Delta region of China for the initial training set to find the relation between construction-stage carbon emissions and design parameters. Compared with the multilinear regression method, the RF-based model has a higher coefficient of determination and lower mean square error. The model developed in this study facilitates the prediction of construction-stage carbon emissions at the early design stage of a building. This opens up novel opportunities to reduce carbon emissions from buildings, which had previously been possible only at the latter stages of a building's life cycle. It will also help policymakers account for the probable distribution and amount of CO2 emissions in a city when multiple construction projects are proceeding simultaneously, so that measures can be implemented to avoid excessive emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季裕发布了新的文献求助10
刚刚
今后应助Wang采纳,获得10
1秒前
优雅的大白菜完成签到 ,获得积分10
1秒前
啦啦啦完成签到 ,获得积分10
10秒前
着急的猴完成签到 ,获得积分10
11秒前
FFFFF完成签到 ,获得积分10
11秒前
11秒前
Mikey完成签到 ,获得积分10
12秒前
在水一方完成签到 ,获得积分10
13秒前
佳佳完成签到 ,获得积分10
18秒前
小丸子完成签到,获得积分10
20秒前
Ferry完成签到 ,获得积分10
20秒前
Owen应助林林采纳,获得10
25秒前
彭于晏应助LONG采纳,获得10
25秒前
29秒前
一卷钢丝球完成签到 ,获得积分10
30秒前
32秒前
柳贯一发布了新的文献求助10
34秒前
酒尚温完成签到 ,获得积分10
34秒前
Criminology34应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
36秒前
优雅柏柳发布了新的文献求助10
37秒前
hhh发布了新的文献求助10
38秒前
sswbzh应助linkman采纳,获得200
42秒前
Akim应助linkman采纳,获得10
42秒前
bkagyin应助linkman采纳,获得50
42秒前
无花果应助linkman采纳,获得10
42秒前
脑洞疼应助夏天搞科研采纳,获得10
42秒前
ding应助优雅柏柳采纳,获得10
47秒前
林林完成签到,获得积分10
48秒前
可爱的函函应助Atopos采纳,获得10
50秒前
愉快的小土豆完成签到,获得积分10
53秒前
触摸涨停板完成签到,获得积分10
59秒前
姜洋完成签到 ,获得积分10
1分钟前
TRACEY完成签到,获得积分10
1分钟前
茶叶蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Atopos发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681194
求助须知:如何正确求助?哪些是违规求助? 5005631
关于积分的说明 15175172
捐赠科研通 4840849
什么是DOI,文献DOI怎么找? 2594550
邀请新用户注册赠送积分活动 1547639
关于科研通互助平台的介绍 1505605