A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage

温室气体 阶段(地层学) 环境科学 生命周期评估 多线性映射 全球变暖 环境工程 生产(经济) 土木工程 工程类 气候变化 数学 宏观经济学 生态学 古生物学 经济 纯数学 生物
作者
Yuan Fang,Xiaoqing Lu,Hongyang Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:328: 129657-129657 被引量:93
标识
DOI:10.1016/j.jclepro.2021.129657
摘要

Carbon dioxide (CO2) emissions is a major greenhouse gas that causes global warming. Many researchers in the fields of architecture, engineering, and construction try to measured CO2 emissions during a building's lifecycle. However, research on the CO2 emissions during construction stage are less studied than those during other stages because they are considered to be lower than the emissions from the building's materials' production or operational stage. In addition, research has been hindered by a complicated calculation process and a lack of data, and thus few methods are available for forecasting construction-stage carbon emissions, especially at the early design stage. In order to estimate the environmental effects of the emissions from the vast number of construction activities, this study applies a random forest (RF) based predictive method to predict construction-stage carbon emissions. The RF-based model uses data from 38 buildings in the Pearl River Delta region of China for the initial training set to find the relation between construction-stage carbon emissions and design parameters. Compared with the multilinear regression method, the RF-based model has a higher coefficient of determination and lower mean square error. The model developed in this study facilitates the prediction of construction-stage carbon emissions at the early design stage of a building. This opens up novel opportunities to reduce carbon emissions from buildings, which had previously been possible only at the latter stages of a building's life cycle. It will also help policymakers account for the probable distribution and amount of CO2 emissions in a city when multiple construction projects are proceeding simultaneously, so that measures can be implemented to avoid excessive emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助张艺跃采纳,获得10
刚刚
1秒前
潇洒的博完成签到,获得积分10
1秒前
2秒前
3秒前
科研通AI2S应助缥莲采纳,获得10
3秒前
3秒前
Dinglin完成签到,获得积分10
3秒前
丛士乔完成签到 ,获得积分10
3秒前
4秒前
怒发十篇高分sci完成签到,获得积分20
4秒前
乔乔完成签到,获得积分10
5秒前
5秒前
杨昌琪发布了新的文献求助10
5秒前
Tom发布了新的文献求助10
5秒前
灵灵妖发布了新的文献求助10
5秒前
5秒前
情怀应助火星上的大炮采纳,获得10
6秒前
w_完成签到,获得积分10
6秒前
6秒前
majiayang完成签到,获得积分10
6秒前
颖w完成签到,获得积分10
7秒前
光亮的青寒完成签到,获得积分10
7秒前
情怀应助MC采纳,获得10
7秒前
蓝天发布了新的文献求助10
8秒前
8秒前
依依发布了新的文献求助10
8秒前
spencer177完成签到,获得积分10
8秒前
qianhuxinyu完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
完美世界应助emmm采纳,获得10
9秒前
9秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
10秒前
行行行发布了新的文献求助10
10秒前
科研通AI6应助刘霆勋采纳,获得10
10秒前
awoe完成签到,获得积分10
10秒前
拙青完成签到,获得积分10
11秒前
wangbq完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836