A Machine Learning Model to Predict Intravenous Immunoglobulin-Resistant Kawasaki Disease Patients: A Retrospective Study Based on the Chongqing Population

医学 逻辑回归 列线图 川崎病 内科学 人口 降钙素原 回顾性队列研究 机器学习 计算机科学 环境卫生 动脉 败血症
作者
Jie Liu,Jian Zhang,Haohao Huang,Yunting Wang,Zuyue Zhang,Yunfeng Ma,Xin He
出处
期刊:Frontiers in Pediatrics [Frontiers Media SA]
卷期号:9 被引量:10
标识
DOI:10.3389/fped.2021.756095
摘要

Objective: We explored the risk factors for intravenous immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD) and constructed a prediction model based on machine learning algorithms. Methods: A retrospective study including 1,398 KD patients hospitalized in 7 affiliated hospitals of Chongqing Medical University from January 2015 to August 2020 was conducted. All patients were divided into IVIG-responsive and IVIG-resistant groups, which were randomly divided into training and validation sets. The independent risk factors were determined using logistic regression analysis. Logistic regression nomograms, support vector machine (SVM), XGBoost and LightGBM prediction models were constructed and compared with the previous models. Results: In total, 1,240 out of 1,398 patients were IVIG responders, while 158 were resistant to IVIG. According to the results of logistic regression analysis of the training set, four independent risk factors were identified, including total bilirubin (TBIL) (OR = 1.115, 95% CI 1.067-1.165), procalcitonin (PCT) (OR = 1.511, 95% CI 1.270-1.798), alanine aminotransferase (ALT) (OR = 1.013, 95% CI 1.008-1.018) and platelet count (PLT) (OR = 0.998, 95% CI 0.996-1). Logistic regression nomogram, SVM, XGBoost, and LightGBM prediction models were constructed based on the above independent risk factors. The sensitivity was 0.617, 0.681, 0.638, and 0.702, the specificity was 0.712, 0.841, 0.967, and 0.903, and the area under curve (AUC) was 0.731, 0.814, 0.804, and 0.874, respectively. Among the prediction models, the LightGBM model displayed the best ability for comprehensive prediction, with an AUC of 0.874, which surpassed the previous classic models of Egami (AUC = 0.581), Kobayashi (AUC = 0.524), Sano (AUC = 0.519), Fu (AUC = 0.578), and Formosa (AUC = 0.575). Conclusion: The machine learning LightGBM prediction model for IVIG-resistant KD patients was superior to previous models. Our findings may help to accomplish early identification of the risk of IVIG resistance and improve their outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助000采纳,获得10
2秒前
3秒前
乐乐乐乐乐乐应助球球采纳,获得10
5秒前
爱笑的眼睛完成签到,获得积分10
6秒前
6543210完成签到,获得积分10
7秒前
简单的冬瓜完成签到,获得积分10
8秒前
喜悦凌丝发布了新的文献求助10
9秒前
占那个完成签到 ,获得积分10
10秒前
开心不评完成签到 ,获得积分10
11秒前
zhang完成签到 ,获得积分10
12秒前
虚心的如曼完成签到 ,获得积分10
13秒前
15秒前
16秒前
酷波er应助Li采纳,获得10
16秒前
18秒前
Beee发布了新的文献求助10
21秒前
LALALADDDD完成签到,获得积分10
26秒前
小熊完成签到,获得积分10
27秒前
27秒前
Owen应助小卡比采纳,获得10
29秒前
YANG完成签到 ,获得积分10
29秒前
刘科江完成签到,获得积分10
29秒前
七彩光完成签到 ,获得积分10
29秒前
Z1Z11Z完成签到,获得积分10
30秒前
31秒前
31秒前
zauhda完成签到,获得积分10
32秒前
天天呼的海角完成签到,获得积分10
34秒前
Alive完成签到,获得积分10
34秒前
35秒前
35秒前
隐形曼青应助科研通管家采纳,获得10
38秒前
SciGPT应助科研通管家采纳,获得10
38秒前
啵啵只因完成签到,获得积分10
38秒前
VDC应助科研通管家采纳,获得30
38秒前
VDC应助科研通管家采纳,获得30
38秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
38秒前
cocolu应助科研通管家采纳,获得10
38秒前
Beee完成签到,获得积分10
39秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342425
求助须知:如何正确求助?哪些是违规求助? 2969606
关于积分的说明 8640499
捐赠科研通 2649596
什么是DOI,文献DOI怎么找? 1450772
科研通“疑难数据库(出版商)”最低求助积分说明 671981
邀请新用户注册赠送积分活动 661224