亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization

解算器 偏微分方程 离散化 计算机科学 应用数学 有限体积法 趋同(经济学) 数学优化 数学 算法 数学分析 物理 机械 经济 经济增长
作者
Rishikesh Ranade,Chris Hill,Jay Pathak
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:378: 113722-113722 被引量:134
标识
DOI:10.1016/j.cma.2021.113722
摘要

Over the last few decades, existing Partial Differential Equation (PDE) solvers have demonstrated a tremendous success in solving complex, non-linear PDEs. Although accurate, these PDE solvers are computationally costly. With the advances in Machine Learning (ML) technologies, there has been a significant increase in the research of using ML to solve PDEs. The goal of this work is to develop an ML-based PDE solver, that couples’ important characteristics of existing PDE solvers with ML technologies. The two solver characteristics that have been adopted in this work are: (1) the use of discretization-based schemes to approximate spatio-temporal partial derivatives and (2) the use of iterative algorithms to solve linearized PDEs in their discrete form. In the presence of highly non-linear, coupled PDE solutions, these strategies can be very important in achieving good accuracy, better stability and faster convergence. Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder–decoder model with PDE variables as both input and output features. During training, the discretization schemes are implemented inside the computational graph to enable faster GPU computation of PDE residuals, which are used to update network weights that result into converged solutions. A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver. The ML-Solver is demonstrated to solve the steady, incompressible Navier–Stokes equations in 3-D for several cases such as, lid-driven cavity, flow past a cylinder and conjugate heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的含烟完成签到,获得积分10
5秒前
嘻嘻完成签到,获得积分10
1分钟前
Fairy完成签到,获得积分10
2分钟前
夏日香气完成签到 ,获得积分10
3分钟前
Ava应助pepper采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
咯咯咯完成签到 ,获得积分10
4分钟前
5分钟前
飞快的孱发布了新的文献求助10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
pepper完成签到,获得积分20
6分钟前
6分钟前
飞快的孱发布了新的文献求助10
6分钟前
pepper发布了新的文献求助10
6分钟前
标致的泥猴桃完成签到,获得积分10
6分钟前
笨笨山芙完成签到 ,获得积分10
6分钟前
CH完成签到 ,获得积分10
7分钟前
李佳倩完成签到 ,获得积分10
7分钟前
阿狸完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
Koala04完成签到,获得积分10
8分钟前
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
飞快的孱发布了新的文献求助10
8分钟前
8分钟前
jitianxing发布了新的文献求助10
8分钟前
9分钟前
9分钟前
科研通AI5应助jitianxing采纳,获得10
11分钟前
我是老大应助科研通管家采纳,获得10
11分钟前
forest完成签到,获得积分10
12分钟前
12分钟前
jitianxing发布了新的文献求助10
12分钟前
vbnn完成签到 ,获得积分10
12分钟前
冷傲半邪完成签到,获得积分10
12分钟前
无幻完成签到 ,获得积分10
12分钟前
松松完成签到 ,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582490
求助须知:如何正确求助?哪些是违规求助? 4000216
关于积分的说明 12382261
捐赠科研通 3675224
什么是DOI,文献DOI怎么找? 2025756
邀请新用户注册赠送积分活动 1059394
科研通“疑难数据库(出版商)”最低求助积分说明 946082