DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization

解算器 偏微分方程 离散化 计算机科学 应用数学 有限体积法 趋同(经济学) 数学优化 数学 算法 数学分析 物理 机械 经济 经济增长
作者
Rishikesh Ranade,Chris Hill,Jay Pathak
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:378: 113722-113722 被引量:115
标识
DOI:10.1016/j.cma.2021.113722
摘要

Over the last few decades, existing Partial Differential Equation (PDE) solvers have demonstrated a tremendous success in solving complex, non-linear PDEs. Although accurate, these PDE solvers are computationally costly. With the advances in Machine Learning (ML) technologies, there has been a significant increase in the research of using ML to solve PDEs. The goal of this work is to develop an ML-based PDE solver, that couples’ important characteristics of existing PDE solvers with ML technologies. The two solver characteristics that have been adopted in this work are: (1) the use of discretization-based schemes to approximate spatio-temporal partial derivatives and (2) the use of iterative algorithms to solve linearized PDEs in their discrete form. In the presence of highly non-linear, coupled PDE solutions, these strategies can be very important in achieving good accuracy, better stability and faster convergence. Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder–decoder model with PDE variables as both input and output features. During training, the discretization schemes are implemented inside the computational graph to enable faster GPU computation of PDE residuals, which are used to update network weights that result into converged solutions. A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver. The ML-Solver is demonstrated to solve the steady, incompressible Navier–Stokes equations in 3-D for several cases such as, lid-driven cavity, flow past a cylinder and conjugate heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谨慎翎发布了新的文献求助10
3秒前
3秒前
海盐小姐发布了新的文献求助10
5秒前
5秒前
胡树完成签到,获得积分10
6秒前
杰尼乾乾发布了新的文献求助10
6秒前
6秒前
深情安青应助内向雅香采纳,获得10
8秒前
8秒前
朵拉A梦完成签到,获得积分10
10秒前
U9A发布了新的文献求助10
10秒前
11秒前
chris完成签到,获得积分10
12秒前
蓝色花生豆完成签到,获得积分10
12秒前
隐形曼青应助犹豫的寄文采纳,获得10
13秒前
百灵鸟完成签到,获得积分10
13秒前
14秒前
Hq发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
科研通AI5应助222采纳,获得10
16秒前
谨慎哈密瓜完成签到,获得积分10
17秒前
核桃发布了新的文献求助30
18秒前
彭于晏应助CHAIZH采纳,获得10
18秒前
钙离子发布了新的文献求助10
19秒前
怂怂鼠完成签到,获得积分10
20秒前
汉堡包应助坚定小熊猫采纳,获得10
21秒前
内向雅香发布了新的文献求助10
21秒前
圈圈儿关注了科研通微信公众号
22秒前
碧蓝醉蝶完成签到 ,获得积分10
22秒前
饼藏发布了新的文献求助10
23秒前
23秒前
CodeCraft应助HHHAN采纳,获得10
23秒前
24秒前
搜集达人应助xpqiu采纳,获得10
24秒前
传奇3应助kaka采纳,获得10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528