DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization

解算器 偏微分方程 离散化 计算机科学 应用数学 有限体积法 趋同(经济学) 数学优化 数学 算法 数学分析 经济增长 机械 物理 经济
作者
Rishikesh Ranade,Christopher Hill,Jay Pathak
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:378: 113722-113722 被引量:97
标识
DOI:10.1016/j.cma.2021.113722
摘要

Over the last few decades, existing Partial Differential Equation (PDE) solvers have demonstrated a tremendous success in solving complex, non-linear PDEs. Although accurate, these PDE solvers are computationally costly. With the advances in Machine Learning (ML) technologies, there has been a significant increase in the research of using ML to solve PDEs. The goal of this work is to develop an ML-based PDE solver, that couples’ important characteristics of existing PDE solvers with ML technologies. The two solver characteristics that have been adopted in this work are: (1) the use of discretization-based schemes to approximate spatio-temporal partial derivatives and (2) the use of iterative algorithms to solve linearized PDEs in their discrete form. In the presence of highly non-linear, coupled PDE solutions, these strategies can be very important in achieving good accuracy, better stability and faster convergence. Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder–decoder model with PDE variables as both input and output features. During training, the discretization schemes are implemented inside the computational graph to enable faster GPU computation of PDE residuals, which are used to update network weights that result into converged solutions. A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver. The ML-Solver is demonstrated to solve the steady, incompressible Navier–Stokes equations in 3-D for several cases such as, lid-driven cavity, flow past a cylinder and conjugate heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
傻傻的哲瀚完成签到,获得积分20
2秒前
青苔完成签到 ,获得积分10
2秒前
梁_发布了新的文献求助10
2秒前
黑咖喱发布了新的文献求助10
3秒前
4秒前
123456qi发布了新的文献求助10
4秒前
wuyan204完成签到 ,获得积分10
4秒前
含蓄含烟完成签到,获得积分10
5秒前
hahaha完成签到 ,获得积分10
5秒前
等乙天发布了新的文献求助10
5秒前
6秒前
Juie完成签到,获得积分10
7秒前
7秒前
夏侯无色完成签到,获得积分10
7秒前
8秒前
Orange应助悦风采纳,获得10
8秒前
田様应助天下任我行采纳,获得10
8秒前
9秒前
9秒前
123关闭了123文献求助
10秒前
meng完成签到 ,获得积分10
10秒前
articlechaser发布了新的文献求助10
10秒前
CC完成签到 ,获得积分10
11秒前
哎嘿应助机灵夜云采纳,获得10
11秒前
勾股定理发布了新的文献求助30
11秒前
可爱的函函应助浪里白条采纳,获得10
11秒前
扬州完成签到,获得积分10
12秒前
靜心发布了新的文献求助20
12秒前
12秒前
Yang_Yuting完成签到 ,获得积分10
13秒前
风中老三完成签到,获得积分10
13秒前
欢呼妙彤发布了新的文献求助10
14秒前
彩色的篮球完成签到 ,获得积分10
15秒前
luoyulin完成签到,获得积分10
15秒前
15秒前
15秒前
JMao完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760