亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DiscretizationNet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization

解算器 偏微分方程 离散化 计算机科学 应用数学 有限体积法 趋同(经济学) 数学优化 数学 算法 数学分析 经济增长 机械 物理 经济
作者
Rishikesh Ranade,Chris Hill,Jay Pathak
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:378: 113722-113722 被引量:134
标识
DOI:10.1016/j.cma.2021.113722
摘要

Over the last few decades, existing Partial Differential Equation (PDE) solvers have demonstrated a tremendous success in solving complex, non-linear PDEs. Although accurate, these PDE solvers are computationally costly. With the advances in Machine Learning (ML) technologies, there has been a significant increase in the research of using ML to solve PDEs. The goal of this work is to develop an ML-based PDE solver, that couples’ important characteristics of existing PDE solvers with ML technologies. The two solver characteristics that have been adopted in this work are: (1) the use of discretization-based schemes to approximate spatio-temporal partial derivatives and (2) the use of iterative algorithms to solve linearized PDEs in their discrete form. In the presence of highly non-linear, coupled PDE solutions, these strategies can be very important in achieving good accuracy, better stability and faster convergence. Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder–decoder model with PDE variables as both input and output features. During training, the discretization schemes are implemented inside the computational graph to enable faster GPU computation of PDE residuals, which are used to update network weights that result into converged solutions. A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver. The ML-Solver is demonstrated to solve the steady, incompressible Navier–Stokes equations in 3-D for several cases such as, lid-driven cavity, flow past a cylinder and conjugate heat transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
NattyPoe应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
22秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
34秒前
充电宝应助酷炫灰狼采纳,获得10
35秒前
李爱国应助可靠的寒风采纳,获得10
48秒前
TT完成签到 ,获得积分10
53秒前
56秒前
59秒前
zsmj23完成签到 ,获得积分0
1分钟前
sun发布了新的文献求助10
1分钟前
林一发布了新的文献求助10
1分钟前
Hello应助雾里采纳,获得10
1分钟前
1分钟前
小二郎应助鳄鱼不做饿梦采纳,获得10
1分钟前
Criminology34应助林一采纳,获得10
1分钟前
1分钟前
酷炫灰狼发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
蜜汁章鱼丸完成签到 ,获得积分10
2分钟前
赘婿应助酷炫灰狼采纳,获得10
2分钟前
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Jasper应助酷炫灰狼采纳,获得10
3分钟前
3分钟前
小卢卢快闭嘴完成签到,获得积分10
3分钟前
3分钟前
酷炫灰狼完成签到,获得积分10
3分钟前
3分钟前
Akim应助Developing_human采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
daizao完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399