Long-term Origin-Destination Demand Prediction with Graph Deep Learning

计算机科学 亲密度 期限(时间) 长期预测 图形 数据挖掘 卷积(计算机科学) 深度学习 渲染(计算机图形) 时间序列 人工智能 机器学习 理论计算机科学 人工神经网络 数学 数学分析 电信 物理 量子力学
作者
Xiexin Zou,Shiyao Zhang,Chenhan Zhang,James J. Q. Yu,Edward Chung
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:: 1-1 被引量:26
标识
DOI:10.1109/tbdata.2021.3063553
摘要

Accurate long-term origin-destination demand (OD) prediction can help understand traffic flow dynamics, which plays an essential role in urban transportation planning. However, the main challenge originates from the complex and dynamic spatial-temporal correlation of the time-varying traffic information. In response, a graph deep learning model for long-term OD prediction (ST-GDL) is proposed in this paper, which is among the pioneering work that obtains both short-term and long-term OD predictions simultaneously. ST-GDL avoids the conventional multi-step forecasting and thus prevents learning from prediction errors, rendering better long-term forecasts. The proposed method captures time attributes from multiple time scales, namely closeness, periodicity, and trend, to study the features with temporal dynamics. Besides, two gate mechanisms are introduced over the vanilla convolution operation to alleviates the error accumulation issue of typical recurrent forecast in long-term OD prediction. A method based on graph convolution is proposed to capture the dynamic spatial relationship, which projects the transportation network into a graphical time-series. Finally, the long-term OD prediction results are obtained by combining the extracted spatio-temporal features with external features from the meteorological information. Case studies on a practical dataset show that the proposed model is superior to existing methods in long-term OD prediction problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶陶子完成签到 ,获得积分10
1秒前
研友_GZ3EbL发布了新的文献求助10
1秒前
xieleito发布了新的文献求助10
1秒前
等一只ya完成签到,获得积分10
1秒前
梓默发布了新的文献求助10
2秒前
2秒前
初夏完成签到,获得积分10
4秒前
NOS完成签到 ,获得积分10
5秒前
helio完成签到,获得积分10
6秒前
YNL发布了新的文献求助10
6秒前
大个应助xlxl采纳,获得10
6秒前
yydragen应助小黄采纳,获得200
7秒前
7秒前
8秒前
可爱的函函应助初夏采纳,获得10
9秒前
9秒前
归尘应助April_nd采纳,获得10
10秒前
Qi完成签到,获得积分10
10秒前
乔乔兔应助东方越彬采纳,获得20
11秒前
Tao完成签到,获得积分10
11秒前
顾矜应助吃不胖猫采纳,获得10
13秒前
斯文败类应助图图采纳,获得10
14秒前
秦春歌完成签到,获得积分10
14秒前
yyfdqms完成签到,获得积分10
15秒前
魔幻傲霜完成签到,获得积分10
16秒前
yydragen应助博修采纳,获得30
16秒前
16秒前
17秒前
轻舟应助轻松连虎采纳,获得20
18秒前
20秒前
一一完成签到,获得积分10
21秒前
Fei发布了新的文献求助10
22秒前
Tori_Q发布了新的文献求助10
23秒前
23秒前
大模型应助重要的奇异果采纳,获得10
24秒前
ernest发布了新的文献求助30
25秒前
落雁沙发布了新的文献求助10
25秒前
田様应助吴彦祖采纳,获得10
25秒前
zmuzhang2019完成签到,获得积分10
26秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517