Long-term Origin-Destination Demand Prediction with Graph Deep Learning

计算机科学 亲密度 期限(时间) 长期预测 图形 数据挖掘 卷积(计算机科学) 深度学习 渲染(计算机图形) 时间序列 人工智能 机器学习 理论计算机科学 人工神经网络 数学 数学分析 物理 电信 量子力学
作者
Xiexin Zou,Shiyao Zhang,Chenhan Zhang,James J. Q. Yu,Edward Chung
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:26
标识
DOI:10.1109/tbdata.2021.3063553
摘要

Accurate long-term origin-destination demand (OD) prediction can help understand traffic flow dynamics, which plays an essential role in urban transportation planning. However, the main challenge originates from the complex and dynamic spatial-temporal correlation of the time-varying traffic information. In response, a graph deep learning model for long-term OD prediction (ST-GDL) is proposed in this paper, which is among the pioneering work that obtains both short-term and long-term OD predictions simultaneously. ST-GDL avoids the conventional multi-step forecasting and thus prevents learning from prediction errors, rendering better long-term forecasts. The proposed method captures time attributes from multiple time scales, namely closeness, periodicity, and trend, to study the features with temporal dynamics. Besides, two gate mechanisms are introduced over the vanilla convolution operation to alleviates the error accumulation issue of typical recurrent forecast in long-term OD prediction. A method based on graph convolution is proposed to capture the dynamic spatial relationship, which projects the transportation network into a graphical time-series. Finally, the long-term OD prediction results are obtained by combining the extracted spatio-temporal features with external features from the meteorological information. Case studies on a practical dataset show that the proposed model is superior to existing methods in long-term OD prediction problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼完成签到 ,获得积分10
2秒前
斯文败类应助星河在眼里采纳,获得10
3秒前
sissiarno应助张益达采纳,获得30
3秒前
5秒前
脑洞疼应助苗苗会喵喵采纳,获得10
7秒前
7秒前
打老虎的小蓝球完成签到,获得积分10
7秒前
米娅发布了新的文献求助20
10秒前
sissiarno应助张益达采纳,获得30
10秒前
11秒前
11秒前
11秒前
晓晓来了发布了新的文献求助20
12秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
17秒前
jj824完成签到 ,获得积分10
18秒前
19秒前
cc应助赖建琛采纳,获得50
19秒前
t1234567发布了新的文献求助10
21秒前
21秒前
把握当下发布了新的文献求助10
21秒前
2333关注了科研通微信公众号
22秒前
小蘑菇应助L112233采纳,获得10
22秒前
22秒前
zhangjing完成签到,获得积分10
25秒前
科研八戒发布了新的文献求助10
26秒前
34秒前
温暖的蚂蚁完成签到 ,获得积分10
34秒前
健壮的访曼完成签到,获得积分10
35秒前
谨慎青亦完成签到 ,获得积分10
35秒前
36秒前
Apollonia完成签到 ,获得积分10
36秒前
老程完成签到,获得积分10
37秒前
chen发布了新的文献求助10
39秒前
乔qiqiqiqi发布了新的文献求助10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462