Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation

石墨烯 润滑油 材料科学 纳米技术 冷凝 光电子学 复合材料 气象学 物理
作者
Abinash Tripathy,Cheuk Wing Edmond Lam,Diana Dávila,Matteo Donati,Athanasios Milionis,Chander Shekhar Sharma,Dimos Poulikakos
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (9): 14305-14315 被引量:30
标识
DOI:10.1021/acsnano.1c02932
摘要

Lubricant-infused surfaces (LIS) are highly efficient in repelling water and constitute a very promising family of materials for condensation processes occurring in a broad range of energy applications. However, the performance of LIS in such processes is limited by the inherent thermal resistance imposed by the thickness of the lubricant and supporting surface structure, as well as by the gradual depletion of the lubricant over time. Here, we present an ultrathin (∼70 nm) and conductive LIS architecture, obtained by infusing lubricant into a vertically grown graphene nanoscaffold on copper. The ultrathin nature of the scaffold, combined with the high in-plane thermal conductivity of graphene, drastically minimize earlier limitations, effectively doubling the heat transfer performance compared to a state-of-the-art CuO LIS surface. We show that the effect of the thermal resistance to the heat transfer performance of a LIS surface, although often overlooked, can be so detrimental that a simple nanostructured CuO surface can outperform a CuO LIS surface, despite filmwise condensation on the former. The present vertical graphene LIS is also found to be resistant to lubricant depletion, maintaining stable dropwise condensation for at least 24 h with no significant change of advancing contact angle and contact angle hysteresis. The lubricant consumed by the vertical graphene LIS is 52.6% less than that of the existing state-of-the-art CuO LIS, also making the fabrication process more economical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sunjin发布了新的文献求助10
1秒前
调研昵称发布了新的文献求助10
1秒前
药神L完成签到,获得积分10
1秒前
祎思发布了新的文献求助10
2秒前
siji完成签到,获得积分10
2秒前
大胆芷容发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
萤火虫发布了新的文献求助10
4秒前
英姑应助zw采纳,获得10
5秒前
十七应助胡强采纳,获得10
6秒前
火星上冥茗完成签到 ,获得积分10
6秒前
小蘑菇应助幸福采纳,获得10
7秒前
仰卧起坐发布了新的文献求助10
8秒前
思源应助larva采纳,获得10
8秒前
科研通AI2S应助平常亦凝采纳,获得10
9秒前
55555发布了新的文献求助10
9秒前
大个应助初遇之时最暖采纳,获得10
9秒前
lili发布了新的文献求助10
10秒前
优秀的枕头完成签到,获得积分10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
不倦应助科研通管家采纳,获得10
11秒前
Jerry_Liu应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
星辰大海应助祎思采纳,获得10
12秒前
14秒前
李健应助今天读文献了吗采纳,获得10
15秒前
15秒前
zw发布了新的文献求助10
17秒前
larva发布了新的文献求助10
19秒前
科研通AI2S应助mbf采纳,获得10
20秒前
21秒前
21秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387713
求助须知:如何正确求助?哪些是违规求助? 3000289
关于积分的说明 8790795
捐赠科研通 2686306
什么是DOI,文献DOI怎么找? 1471598
科研通“疑难数据库(出版商)”最低求助积分说明 680398
邀请新用户注册赠送积分活动 673160