Clustering Based Feature Data Selection Technique Algorithm for High Dimensional Data: A Novel Approach

聚类分析 特征选择 计算机科学 数据挖掘 模式识别(心理学) 特征(语言学) 人工智能 CURE数据聚类算法 相关聚类 最小冗余特征选择 选择(遗传算法) 单连锁聚类 朴素贝叶斯分类器 算法 支持向量机 语言学 哲学
作者
Amos R,Kowshik N,Suraksha M. S
出处
期刊:Book Publisher International (a part of SCIENCEDOMAIN International) [Book Publisher International (a part of SCIENCEDOMAIN International)]
卷期号:: 33-38
标识
DOI:10.9734/bpi/nvst/v7/5002f
摘要

Feature selection entails identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm can be assessed in terms of both efficiency and effectiveness. While efficiency is concerned with the time required to find a subset of features, effectiveness is concerned with the quality of the subset of features. This paper proposes and experimentally evaluates a fast clustering-based feature selection algorithm, FAST, based on these criteria.  The FAST algorithm operates in two steps. Graph-theoretic clustering methods are used to partition characteristics into clusters in the initial stage. The most representative feature from each cluster that is strongly related to target classes is chosen in the second stage to construct a subset of features. Because the properties in various clusters are relatively independent, FAST's clustering-based technique is likely to produce a subset of valuable and independent features. We use the efficient Minimum-spanning tree clustering method to ensure FAST's efficiency. An empirical study is conducted to assess the efficiency and effectiveness of the FAST algorithm. FAST and several representative feature selection algorithms, such as FCBF, ReliefF, CFS, Consist, and FOCUS-SF, are compared to four types of well-known classifiers, including the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER, before and after feature selection. FAST not only provides smaller subsets of features but also improves the performances of the four types of classifiers, according to the findings, which were based on 35 publicly accessible real-world high-dimensional image, microarray, and text data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
多多完成签到,获得积分10
2秒前
2秒前
牙膏发布了新的文献求助10
3秒前
4秒前
昵称完成签到,获得积分10
5秒前
5秒前
锅锅发布了新的文献求助10
5秒前
5秒前
5秒前
winwin完成签到,获得积分10
5秒前
美满西装完成签到,获得积分10
6秒前
6秒前
Zx950103发布了新的文献求助10
6秒前
天天快乐应助uu采纳,获得10
6秒前
科研通AI5应助牛牛采纳,获得10
7秒前
赘婿应助Nyxia采纳,获得10
7秒前
7秒前
英俊的铭应助热情孤丹采纳,获得10
7秒前
健忘瑾瑜完成签到,获得积分10
7秒前
roy_chiang发布了新的文献求助10
7秒前
8秒前
8秒前
kevin完成签到,获得积分10
8秒前
跳跃凡桃发布了新的文献求助10
9秒前
小马甲应助zjw采纳,获得10
9秒前
大鸣王潮完成签到,获得积分10
10秒前
钻石发布了新的文献求助10
10秒前
星辰大海应助椿上春树采纳,获得10
10秒前
秋慕蕊发布了新的文献求助10
10秒前
远方有个少年完成签到,获得积分10
10秒前
andy发布了新的文献求助30
10秒前
Abi发布了新的文献求助10
11秒前
李健应助曦子曦子采纳,获得10
11秒前
上官若男应助听话的亦云采纳,获得10
11秒前
大个应助kevin采纳,获得10
12秒前
zhangpeng发布了新的文献求助10
12秒前
徐biao发布了新的文献求助10
12秒前
Hello应助Damon采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246