Clustering Based Feature Data Selection Technique Algorithm for High Dimensional Data: A Novel Approach

聚类分析 特征选择 计算机科学 数据挖掘 模式识别(心理学) 特征(语言学) 人工智能 CURE数据聚类算法 相关聚类 最小冗余特征选择 选择(遗传算法) 单连锁聚类 朴素贝叶斯分类器 算法 支持向量机 语言学 哲学
作者
Amos R,Kowshik N,Suraksha M. S
出处
期刊:Book Publisher International (a part of SCIENCEDOMAIN International) [Book Publisher International (a part of SCIENCEDOMAIN International)]
卷期号:: 33-38
标识
DOI:10.9734/bpi/nvst/v7/5002f
摘要

Feature selection entails identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm can be assessed in terms of both efficiency and effectiveness. While efficiency is concerned with the time required to find a subset of features, effectiveness is concerned with the quality of the subset of features. This paper proposes and experimentally evaluates a fast clustering-based feature selection algorithm, FAST, based on these criteria.  The FAST algorithm operates in two steps. Graph-theoretic clustering methods are used to partition characteristics into clusters in the initial stage. The most representative feature from each cluster that is strongly related to target classes is chosen in the second stage to construct a subset of features. Because the properties in various clusters are relatively independent, FAST's clustering-based technique is likely to produce a subset of valuable and independent features. We use the efficient Minimum-spanning tree clustering method to ensure FAST's efficiency. An empirical study is conducted to assess the efficiency and effectiveness of the FAST algorithm. FAST and several representative feature selection algorithms, such as FCBF, ReliefF, CFS, Consist, and FOCUS-SF, are compared to four types of well-known classifiers, including the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER, before and after feature selection. FAST not only provides smaller subsets of features but also improves the performances of the four types of classifiers, according to the findings, which were based on 35 publicly accessible real-world high-dimensional image, microarray, and text data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十分喜欢完成签到,获得积分10
刚刚
少少完成签到 ,获得积分10
2秒前
鱼鱼发布了新的文献求助10
3秒前
最初的远方完成签到,获得积分10
3秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
9秒前
漂亮采波发布了新的文献求助10
11秒前
11秒前
认真的映安完成签到,获得积分10
13秒前
鱼香肉丝发布了新的文献求助10
13秒前
杨三多发布了新的文献求助10
16秒前
17秒前
颖中竹子完成签到,获得积分10
18秒前
酷波er应助如风采纳,获得10
19秒前
qqqqq完成签到,获得积分10
20秒前
小酥饼完成签到,获得积分10
22秒前
852应助弓长张采纳,获得10
22秒前
大萍子发布了新的文献求助10
23秒前
25秒前
兼得完成签到,获得积分10
27秒前
星辰大海应助123采纳,获得10
29秒前
30秒前
诗瑜发布了新的文献求助50
31秒前
闪闪的妙竹完成签到 ,获得积分10
33秒前
田安平发布了新的文献求助10
36秒前
大模型应助mao采纳,获得10
36秒前
如风发布了新的文献求助10
37秒前
阔达苡发布了新的文献求助10
37秒前
linnazhu完成签到,获得积分10
39秒前
40秒前
诗瑜完成签到,获得积分10
40秒前
40秒前
41秒前
Demonmaster完成签到,获得积分10
42秒前
wch发布了新的文献求助10
42秒前
44秒前
yyy发布了新的文献求助10
44秒前
紫薇的舔狗完成签到,获得积分10
45秒前
聪慧的梦安完成签到,获得积分10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713