Clustering Based Feature Data Selection Technique Algorithm for High Dimensional Data: A Novel Approach

聚类分析 特征选择 计算机科学 数据挖掘 模式识别(心理学) 特征(语言学) 人工智能 CURE数据聚类算法 相关聚类 最小冗余特征选择 选择(遗传算法) 单连锁聚类 朴素贝叶斯分类器 算法 支持向量机 语言学 哲学
作者
Amos R,Kowshik N,Suraksha M. S
出处
期刊:Book Publisher International (a part of SCIENCEDOMAIN International) [Book Publisher International (a part of SCIENCEDOMAIN International)]
卷期号:: 33-38
标识
DOI:10.9734/bpi/nvst/v7/5002f
摘要

Feature selection entails identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm can be assessed in terms of both efficiency and effectiveness. While efficiency is concerned with the time required to find a subset of features, effectiveness is concerned with the quality of the subset of features. This paper proposes and experimentally evaluates a fast clustering-based feature selection algorithm, FAST, based on these criteria.  The FAST algorithm operates in two steps. Graph-theoretic clustering methods are used to partition characteristics into clusters in the initial stage. The most representative feature from each cluster that is strongly related to target classes is chosen in the second stage to construct a subset of features. Because the properties in various clusters are relatively independent, FAST's clustering-based technique is likely to produce a subset of valuable and independent features. We use the efficient Minimum-spanning tree clustering method to ensure FAST's efficiency. An empirical study is conducted to assess the efficiency and effectiveness of the FAST algorithm. FAST and several representative feature selection algorithms, such as FCBF, ReliefF, CFS, Consist, and FOCUS-SF, are compared to four types of well-known classifiers, including the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER, before and after feature selection. FAST not only provides smaller subsets of features but also improves the performances of the four types of classifiers, according to the findings, which were based on 35 publicly accessible real-world high-dimensional image, microarray, and text data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
现代雁桃应助科研通管家采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
刚刚
香蕉诗蕊应助科研通管家采纳,获得10
刚刚
luxkex完成签到,获得积分10
刚刚
香蕉诗蕊应助科研通管家采纳,获得10
刚刚
mouxq发布了新的文献求助10
刚刚
刚刚
1111完成签到,获得积分10
刚刚
qc应助科研通管家采纳,获得10
刚刚
MOMO100完成签到,获得积分10
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1sunpf完成签到,获得积分10
1秒前
spf完成签到,获得积分0
1秒前
刻苦的三问完成签到,获得积分10
2秒前
胡思完成签到,获得积分10
2秒前
合法合规完成签到,获得积分10
2秒前
大方雪卉完成签到,获得积分10
4秒前
4秒前
看文献的高光谱完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
ram999完成签到,获得积分10
5秒前
贪玩的月光完成签到 ,获得积分20
5秒前
lll完成签到,获得积分20
5秒前
天天快乐应助czz采纳,获得10
5秒前
善学以致用应助小白采纳,获得10
5秒前
6秒前
ZhangChulun发布了新的文献求助10
6秒前
周于琳完成签到,获得积分10
6秒前
jucy完成签到,获得积分10
7秒前
lingyansun完成签到 ,获得积分10
7秒前
山岚完成签到,获得积分10
8秒前
陶醉的小海豚完成签到,获得积分10
9秒前
英俊的铭应助Bailey采纳,获得10
10秒前
无奈醉柳完成签到,获得积分10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698993
求助须知:如何正确求助?哪些是违规求助? 5128246
关于积分的说明 15223758
捐赠科研通 4853988
什么是DOI,文献DOI怎么找? 2604401
邀请新用户注册赠送积分活动 1555903
关于科研通互助平台的介绍 1514243