亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clustering Based Feature Data Selection Technique Algorithm for High Dimensional Data: A Novel Approach

聚类分析 特征选择 计算机科学 数据挖掘 模式识别(心理学) 特征(语言学) 人工智能 CURE数据聚类算法 相关聚类 最小冗余特征选择 选择(遗传算法) 单连锁聚类 朴素贝叶斯分类器 算法 支持向量机 语言学 哲学
作者
Amos R,Kowshik N,Suraksha M. S
出处
期刊:Book Publisher International (a part of SCIENCEDOMAIN International) [Book Publisher International (a part of SCIENCEDOMAIN International)]
卷期号:: 33-38
标识
DOI:10.9734/bpi/nvst/v7/5002f
摘要

Feature selection entails identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm can be assessed in terms of both efficiency and effectiveness. While efficiency is concerned with the time required to find a subset of features, effectiveness is concerned with the quality of the subset of features. This paper proposes and experimentally evaluates a fast clustering-based feature selection algorithm, FAST, based on these criteria.  The FAST algorithm operates in two steps. Graph-theoretic clustering methods are used to partition characteristics into clusters in the initial stage. The most representative feature from each cluster that is strongly related to target classes is chosen in the second stage to construct a subset of features. Because the properties in various clusters are relatively independent, FAST's clustering-based technique is likely to produce a subset of valuable and independent features. We use the efficient Minimum-spanning tree clustering method to ensure FAST's efficiency. An empirical study is conducted to assess the efficiency and effectiveness of the FAST algorithm. FAST and several representative feature selection algorithms, such as FCBF, ReliefF, CFS, Consist, and FOCUS-SF, are compared to four types of well-known classifiers, including the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER, before and after feature selection. FAST not only provides smaller subsets of features but also improves the performances of the four types of classifiers, according to the findings, which were based on 35 publicly accessible real-world high-dimensional image, microarray, and text data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
merrylake完成签到 ,获得积分10
43秒前
46秒前
Akim应助重庆森林采纳,获得30
51秒前
1分钟前
1分钟前
1分钟前
重庆森林发布了新的文献求助30
1分钟前
邢夏之完成签到 ,获得积分0
1分钟前
重庆森林完成签到,获得积分10
1分钟前
2分钟前
PeterLin完成签到,获得积分10
2分钟前
科研通AI6应助PeterLin采纳,获得10
2分钟前
Asofi完成签到,获得积分10
2分钟前
lulululululu发布了新的文献求助10
2分钟前
2分钟前
lulululululu完成签到,获得积分10
2分钟前
3分钟前
Raunio发布了新的文献求助10
3分钟前
舒服的幼荷完成签到,获得积分10
3分钟前
3分钟前
3分钟前
尤里有气完成签到,获得积分10
3分钟前
Jenny发布了新的文献求助10
4分钟前
Jenny完成签到,获得积分10
4分钟前
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
6分钟前
hui发布了新的文献求助30
6分钟前
7分钟前
研友_VZG7GZ应助sy采纳,获得10
7分钟前
xiaofeixia完成签到 ,获得积分10
7分钟前
wada3n完成签到,获得积分10
8分钟前
8分钟前
我很好完成签到 ,获得积分10
9分钟前
bkagyin应助中原第一深情采纳,获得10
9分钟前
elsa622完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633344
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723