Generalizability Study of a Fluence Map Prediction Network.

医学 概化理论 人工智能 统计
作者
Lin Ma,Mingli Chen,Xuejun Gu,Weiguo Lu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3)
标识
DOI:10.1016/j.ijrobp.2021.07.080
摘要

Purpose/Objective(s) A deep learning-based fluence map prediction network (FMPN) was developed for predicting fluence maps for given desired dose distributions. The FMPN was trained with head and neck (HN) VMAT plans only. Theoretically, the FMPN learned an inverse planning optimization procedure, so it is a general method working for other types of plans. This work is to investigate the FMPN's generalizability in various clinical scenarios apart from the training data. Materials/Methods The FMPN which maps projections of 3D dose distribution to fluence maps was trained only with clinical HN full-arc VMAT plans. The baseline performance of the FMPN was evaluated on 102 HN full-arc VMAT plans independent of training dataset. To evaluate how well it generalizes to other clinical scenarios, we designed three tests, each of which has a feature different from training scenario. In Test A, we test the FMPN on a different treatment site, prostate. In Test B, we test the network on different delivery modality with three partial-arc VMAT plans and one IMRT plan. The first partial-arc plan is for a simple pelvis case with small PTV, while the other two are derived by blocking some angles of a plan for a complicated HN case with large concave PTV. The arc coverage for three plans are 120-360, 0-180, and 0-90/180-270 degrees. The IMRT plan is re-optimized from the HN case using eight equi-spaced angles. In Test C, we test the network on different degrees of modulation (DOM), in which four plans are generated by re-optimizing the HN case using four levels of penalty on DOM. Since there's a trade-off between plan DOM and plan quality, these four plans also distribute in a wide range of plan quality. The FMPN's baseline performance and generalizability were quantified by comparing the dose of FMPN-predicted fluence maps to the ground truth dose (the desired dose, input of FMPN) using 3D Gamma passing rate. Results All results are listed in Table 1. As shown in Test A, FMPN achieved a prediction accuracy in prostate site as high as in training site (HN). In test B, performance is excellent on partial-arc VMAT and degrades on IMRT, which is reasonable because IMRT is too far away from training data (full-arc VMAT) from data distribution point of view. In Test C, FMPN can predict fluence map for plans with various DOM/quality and accuracy doesn't vary with DOM. Conclusion The FMPN trained on HN full-arc VMAT plans achieves high accuracy on various clinical scenarios without retraining the model. Our results demonstrate that the FMPN is well generalizable to other treatment site, delivery modality and various DOM, showing great potential for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kchrisuzad发布了新的文献求助10
2秒前
飞花影发布了新的文献求助10
3秒前
hxb应助小白采纳,获得10
3秒前
3秒前
3秒前
rxx给rxx的求助进行了留言
4秒前
紫色奶萨完成签到,获得积分10
4秒前
6秒前
爆米花应助儒雅的乐珍采纳,获得10
6秒前
诚心太君发布了新的文献求助10
7秒前
luckygirl发布了新的文献求助10
7秒前
sss发布了新的文献求助10
8秒前
Akim应助夏樱采纳,获得10
8秒前
Mercury发布了新的文献求助10
8秒前
8秒前
9秒前
阿王完成签到,获得积分10
10秒前
JamesPei应助Z1070741749采纳,获得10
12秒前
镁铝发布了新的文献求助10
14秒前
14秒前
希望天下0贩的0应助sss采纳,获得10
14秒前
18秒前
18秒前
典雅涵瑶发布了新的文献求助10
18秒前
CarolineOY完成签到,获得积分10
20秒前
20秒前
22秒前
llc完成签到,获得积分10
23秒前
狂野的绿蕊完成签到,获得积分10
23秒前
传奇3应助安寒采纳,获得10
24秒前
Z1070741749发布了新的文献求助10
24秒前
FangyingTang完成签到 ,获得积分10
24秒前
zgx完成签到,获得积分10
25秒前
25秒前
优秀笑槐发布了新的文献求助10
25秒前
25秒前
斑比发布了新的文献求助10
26秒前
Orange应助俏皮老四采纳,获得10
27秒前
无花果应助佳佳欧巴采纳,获得10
27秒前
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187