DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology

表观遗传学 精确肿瘤学 表观遗传学 仿形(计算机编程) 表观基因组 生物标志物发现 癌症研究 计算机科学 生物信息学 生物标志物 差异甲基化区 精密医学 液体活检 癌症
作者
Drew Pratt,Felix Sahm,Kenneth Aldape
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:23
标识
DOI:10.1093/neuonc/noab143
摘要

Recent years have witnessed a shift to more objective and biologically-driven methods for central nervous system (CNS) tumor classification. The 2016 world health organization (WHO) classification update (blue book) introduced molecular diagnostic criteria into the definitions of specific entities as a response to the plethora of evidence that key molecular alterations define distinct tumor types and are clinically meaningful. While in the past such diagnostic alterations included specific mutations, copy number changes, or gene fusions, the emergence of DNA methylation arrays in recent years has similarly resulted in improved diagnostic precision, increased reliability, and has provided an effective framework for the discovery of new tumor types. In many instances, there is an intimate relationship between these mutations/fusions and DNA methylation signatures. The adoption of methylation data into neuro-oncology nosology has been greatly aided by the availability of technology compatible with clinical diagnostics, along with the development of a freely accessible machine learning-based classifier. In this review, we highlight the utility of DNA methylation profiling in CNS tumor classification with a focus on recently described novel and rare tumor types, as well as its contribution to refining existing types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
晴天完成签到,获得积分10
2秒前
xiaozheng发布了新的文献求助10
2秒前
3秒前
干净幻梅完成签到,获得积分20
4秒前
6秒前
念心发布了新的文献求助10
7秒前
7秒前
shallow完成签到,获得积分10
8秒前
8秒前
潇洒小海豚完成签到,获得积分10
8秒前
dt应助CHH采纳,获得10
9秒前
SciGPT应助熊熊采纳,获得10
12秒前
12秒前
所所应助甜橙采纳,获得10
12秒前
小马甲应助xiaozheng采纳,获得10
12秒前
顺心的水之完成签到,获得积分10
12秒前
13秒前
ming应助Yuki采纳,获得10
16秒前
wdqd完成签到 ,获得积分10
17秒前
不配.应助zhumengyu采纳,获得10
19秒前
默默的聪健完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
Pengzhuhuai完成签到,获得积分10
23秒前
小泉发布了新的文献求助10
24秒前
24秒前
24秒前
甜橙发布了新的文献求助10
24秒前
25秒前
cxmessi26应助酷炫的背包采纳,获得20
26秒前
汎影发布了新的文献求助10
27秒前
不配.应助淡淡的忆彤采纳,获得20
27秒前
qhk完成签到,获得积分10
27秒前
kk应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
ding应助科研通管家采纳,获得10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046